Download Free Emergency Vehicle Approaching Book in PDF and EPUB Free Download. You can read online Emergency Vehicle Approaching and write the review.

Driving an emergency vehicle can be difficult. The driver of the emergency vehicle must navigate, communicate with emergency services, often drive at high speeds, and take surrounding traffic into account. Civilian drivers are required by law to give way to emergency vehicles with lights and sirens activated. Despite this, they sometimes fail to move over. One reason is not noticing the emergency vehicle in time. This dissertation aims to understand how technology can support civilian drivers in their interactions with emergency vehicles. One form of technology used to make drivers move over is emergency vehicle lighting. The results of this dissertation show that alternative designs of emergency vehicle lighting can affect driver behavior and that the current designs are not always suited to promote the most desirable driver behavior. Another technological approach to supporting drivers in their interactions with emergency vehicles is the use of Cooperative Intelligent Transport Systems (C-ITS). One C-ITS service is the Emergency Vehicle Approaching (EVA) warning. An EVA warning is an early in-car warning sent out to the driver before being overtaken by an emergency vehicle, providing more time to move over. Three driving simulator studies with EVA warnings were conducted in this dissertation. The results indicate that EVA warnings make drivers move over more quickly and thereby decrease delay time for emergency vehicles. Furthermore, there is a learning effect when receiving multiple EVA warnings, implying that drivers move over more quickly once they are familiar with the system. One of the simulator studies used eye tracking and showed that EVA warnings make drivers scan mirrors earlier, compared to when not receiving an EVA warning. An EVA warning is distributed based on the most probable path of the emergency vehicle. If the driver of the emergency vehicle decides on another route, there is a risk of false EVA warnings. Therefore, this dissertation explored how false alarms, and false expectations of EVA warnings, affect drivers. Receiving false alarms makes drivers move over more slowly in future interactions and negatively affects attitudes toward the EVA system. Furthermore, wrongly expecting an EVA warning makes drivers less attentive to the road ahead. In conclusion, both emergency vehicle lighting and EVA warnings can support civilian drivers in their interactions with emergency vehicles. It can decrease the risks of both collisions and delays. However, to implement a large-scale deployment of C-ITS, Sweden needs digital infrastructure to support secure data exchange Att framföra ett utryckningsfordon är utmanande. Utryckningsföraren förväntas navigera, kommunicera med larmcentralen, framföra utryckningsfordonet i inte sällan höga hastigheter och samtidigt ta hänsyn till omgivande trafik. Bilister är enligt lag tvungna att lämna fri väg för utryckningsfordon med blåljus och sirener. Trots det misslyckas ibland förare med att lämna fri väg. En anledning är att de inte hinner uppfatta utryckningsfordonet i tid. Syftet med denna avhandling är att förstå hur teknik kan stödja förare vid interaktioner med utryckningsfordon. En form av teknik som används för att få förare att lämna fri väg är blåljus. Resultaten av denna avhandling visar att alternativa designlösningar för blåljus kan påverka förarnas beteende och att de nu-varande utformningarna inte alltid är optimala för att främja det mest önskvärda förarbeteendet. En annan metod för att stötta förare i deras interaktion med utryckningsfordon är uppkopplad fordonsteknik, så kallat Cooperative Intelligent Transport Systems (C-ITS). En typ av C-ITS-tjänst är Emergency Vehicle Approaching (EVA)-varningar. En EVA-varning är en tidig varning som skickas ut till bilisten innan utryckningsfordonet kör ikapp, vilket ger föraren mer tid att lämna fri väg. Tre förarsimulatorstudier med EVA-varningar genomfördes inom ramen för avhandlingen. Resultaten visar på att EVA-varningar kan få förare att lämna fri väg snabbare och därmed minska förseningar för utryckningsfordon. Dessutom finns det en inlärningseffekt med EVA varningar som innebär att förare lämnar fri väg snabbare när de är bekanta med EVA systemet. I en av simulatorstudierna användes ögonrörelsemätning som visade att EVA-varningar får förare att skanna av speglarna i bilen tidigare, jämfört med när de inte får någon EVA-varning. En EVA-varning distribueras baserat på den mest sannolika vägen för utryckningsfordonet. Om föraren av utryckningsfordonet väljer en annan väg finns det risk för falska EVA-varningar. I den här avhandlingen undersöktes därför hur falska larm och en falsk förväntan om EVA-varningar påverkar förare. Att ta emot falska larm påverkade förarnas framtida interaktioner och inställning till EVA-systemet. Dessutom gjorde en felaktig förväntan på en EVA-varning till att förarna var mindre uppmärksamma på vägen framför dem. Sammanfattningsvis kan både blåljus och EVA-varningar stödja civila förare i interaktionen med utryckningsfordon. Varningssystemen kan minska riskerna för både kollisioner och förseningar. För att genomföra en storskalig utbyggnad av C-ITS behöver Sverige dock en digital infrastruktur för att stödja säkert datautbyte.
Driving is a privilege and not a right. Drivers must drive responsibly and safely, obey traffic laws, and never drink and drive. Finally, make sure that you and your passengers are properly buckled up - it's the law! Today's vehicles are loaded with technology that was unheard of even a decade ago. Systems that warn when you are drifting from your lane, assist you in parallel parking, automatically brake in emergency situations and provide 360 degrees of vision around the vehicle via a camera are becoming standard, even on moderately priced vehicles. As remarkable as these leaps in automotive technology are, the truth is that the most important safety feature in any vehicle remains you as the driver. Therefore, it is to your benefit to continue improving and expanding your knowledge of traffic laws and safe driving practices. Driving is a privilege. Once you have been issued a driver's license, you have the responsibility to continually demonstrate the skill and knowledge to drive safely. Whether you have been behind the wheel for decades or are just starting to venture out, driving is a discipline that requires judgment, knowledge, physical and mental self-awareness, and practice. "What Every Driver Must Know" is an excellent resource for assisting you on this lifelong journey.
From Book's Introduction: As traffic volume increases and the highway and interstate system becomes more complex, emergency responders face a growing risk to their personal safety while managing and working at highway incidents. The purpose of this report is to identify practices that have the potential to decrease that risk, as well as to reduce the number of injuries and deaths that occur while responding to and returning from incidents.
This book constitutes the proceedings of the Workshops held in conjunction with SAFECOMP 2020, 39th International Conference on Computer Safety, Reliability and Security, Lisbon, Portugal, September 2020. The 26 regular papers included in this volume were carefully reviewed and selected from 45 submissions; the book also contains one invited paper. The workshops included in this volume are: DECSoS 2020: 15th Workshop on Dependable Smart Embedded and Cyber-Physical Systems and Systems-of-Systems. DepDevOps 2020: First International Workshop on Dependable Development-Operation Continuum Methods for Dependable Cyber-Physical Systems. USDAI 2020: First International Workshop on Underpinnings for Safe Distributed AI. WAISE 2020: Third International Workshop on Artificial Intelligence Safety Engineering. The workshops were held virtually due to the COVID-19 pandemic.
With full color photographs and other illustrations.
Does the identification number 60 indicate a toxic substance or a flammable solid, in the molten state at an elevated temperature? Does the identification number 1035 indicate ethane or butane? What is the difference between natural gas transmission pipelines and natural gas distribution pipelines? If you came upon an overturned truck on the highway that was leaking, would you be able to identify if it was hazardous and know what steps to take? Questions like these and more are answered in the Emergency Response Guidebook. Learn how to identify symbols for and vehicles carrying toxic, flammable, explosive, radioactive, or otherwise harmful substances and how to respond once an incident involving those substances has been identified. Always be prepared in situations that are unfamiliar and dangerous and know how to rectify them. Keeping this guide around at all times will ensure that, if you were to come upon a transportation situation involving hazardous substances or dangerous goods, you will be able to help keep others and yourself out of danger. With color-coded pages for quick and easy reference, this is the official manual used by first responders in the United States and Canada for transportation incidents involving dangerous goods or hazardous materials.
TRB's National Cooperative Highway Research Program (NCHRP) Report 672: Roundabouts: An Informational Guide - Second Edition explores the planning, design, construction, maintenance, and operation of roundabouts. The report also addresses issues that may be useful in helping to explain the trade-offs associated with roundabouts. This report updates the U.S. Federal Highway Administration's Roundabouts: An Informational Guide, based on experience gained in the United States since that guide was published in 2000.
There are approximately 4,000 fatalities in crashes involving trucks and buses in the United States each year. Though estimates are wide-ranging, possibly 10 to 20 percent of these crashes might have involved fatigued drivers. The stresses associated with their particular jobs (irregular schedules, etc.) and the lifestyle that many truck and bus drivers lead, puts them at substantial risk for insufficient sleep and for developing short- and long-term health problems. Commercial Motor Vehicle Driver Fatigue, Long-Term Health and Highway Safety assesses the state of knowledge about the relationship of such factors as hours of driving, hours on duty, and periods of rest to the fatigue experienced by truck and bus drivers while driving and the implications for the safe operation of their vehicles. This report evaluates the relationship of these factors to drivers' health over the longer term, and identifies improvements in data and research methods that can lead to better understanding in both areas.
The Handbook of Intelligent Vehicles provides a complete coverage of the fundamentals, new technologies, and sub-areas essential to the development of intelligent vehicles; it also includes advances made to date, challenges, and future trends. Significant strides in the field have been made to date; however, so far there has been no single book or volume which captures these advances in a comprehensive format, addressing all essential components and subspecialties of intelligent vehicles, as this book does. Since the intended users are engineering practitioners, as well as researchers and graduate students, the book chapters do not only cover fundamentals, methods, and algorithms but also include how software/hardware are implemented, and demonstrate the advances along with their present challenges. Research at both component and systems levels are required to advance the functionality of intelligent vehicles. This volume covers both of these aspects in addition to the fundamentals listed above.