Download Free Emergence Of Unconventional Phases In Quantum Spin Systems Book in PDF and EPUB Free Download. You can read online Emergence Of Unconventional Phases In Quantum Spin Systems and write the review.

Unconventional superconductivity (or superconductivity with a nontrivial Cooper pairing) is believed to exist in many heavy-fermion materials as well as in high temperature superconductors, and is a subject of great theoretical and experimental interest. The remarkable progress achieved in this field has not been reflected in published monographs and textbooks, and there is a gap between current research and the standard education of solid state physicists in the theory of superconductivity. This book is intended to meet this information need and includes the authors' original results.
Magnetism encompasses a wide range of systems and physical phenomena, and its study has posed and exposed both important fundamental problems and many practical applications. Recently, several entirely new phenomena have thus been discovered, generated through cooperative behaviour which could not have been predicted from a knowledge of `one-spin' states. At the same time, advances in sample preparation, experimental technique, apparatus and radiation sources, have led to increasing precision in the investigation and exposure of greater subtleties in magnetic thin films, multilayers and other systems. Examples of unexpected and conceptually new phenomena occur in strongly correlated and fluctuating quantum systems, producing effects such as Haldane and spin-Peierls gaps, solitons, quantum spin glasses and spin liquids. The discovery and elucidation of these `emerging properties' is a central theme in modern condensed matter physics. The present book comprises a series of chapters by world experts, covering both theoretical and experimental aspects. The approach is pedagogical and tutorial, but fully up to date, covering the latest research. The level is appropriate to graduate researchers who may either be just moving into the field or who are already active in condensed matter physics.
This thesis presents an exact theoretical study of dynamical correlation functions in different phases of a two-dimensional quantum spin liquid. By calculating the dynamical spin structure factor and the Raman scattering cross section, this thesis shows that there are salient signatures—qualitative and quantitative—of the Majorana fermions and the gauge fluxes emerging as effective degrees of freedom in the exactly solvable Kitaev honeycomb lattice model. The model is a representative of a class of spin liquids with Majorana fermions coupled to Z2 gauge fields. The qualitative features of the response functions should therefore be characteristic for this broad class of topological states.
This series on condensed matter theories provides a forum for advanced theoretical research in quantum many-body theory. The contributions are highly interdisciplinary, emphasizing common concerns among theorists who apply many-particle methods in such diverse areas as solid-state, low-temperature, statistical, nuclear, particle, and biological physics, as well as in quantum field theory, quantum information and the theory of complex systems. Each individual contribution is preceded by an extended introduction to the topic treated. Useful details not normally presented in journal articles can be found in this volume.
This book explores critical phenomena in highly correlated quantum matter. Specifically, quantum antiferromagnets, magnon Bose condensates, and systems exhibiting deconfined quantum criticality are considered. The book’s main achievement is the incorporation of both quantum and statistical fluctuations into a quantum field theoretic treatment of critical phenomena. This yields significant new insights into an abundance of problems, positions them in a much more general context, and offers an unprecedented power to analyze experimental and numerical data and predict new effects. Further, a major result and overarching theme is the exploration of the scale-dependent coupling constant – an effect known in quantum chromodynamics as “asymptotic freedom.” The book provides the first analysis to reveal asymptotic freedom in the quantum magnetism context, and discusses many other manifestations. Another significant result concerns the development of a consistent theoretical framework that resolves a long-standing inconsistency in the theory of Bose condensation. Using the approach developed here, two new universality classes are subsequently identified. A final major result addresses the exotic scenario of deconfined quantum criticality. Within this framework, the book predicts the Bose condensation of particles with half-integer spin – the first- ever made in this regard. In closing, a smoking gun criterion to test for this exotic condensate is established.
Superconductivity in materials without inversion symmetry in the respective crystal structures occurs in the presence of antisymmetric spin-orbit coupling as a consequence of an emerging electric field gradient. The superconducting condensate is then a superposition of spin-singlet and spin-triplet Cooper pairs. This scenario accounts for various experimental findings such as nodes in the superconducting gap or extremely large upper critical magnetic fields. Spin-triplet pairing can occur in non-centrosymmetric superconductors in spite of Anderson’s theorem that spin-triplet pairing requires a crystal structure that exhibits inversion symmetry. This book, authored and edited by leading researchers in the field, is both an introduction to and overview on this exciting branch of novel superconductors. Its self-contained and tutorial style makes it particularly suitable for self-study and as source of teaching material for special seminars and courses. At the same time it constitutes an up-to-date and authoritative reference for anyone working in this exciting field.
C N Yang is a towering figure of science who has significantly extended human understanding of nature, headed one of the foremost research institutes in physics for three decades, and made great contributions to the advances of Chinese physics. This Festschrift in honor of Professor Yang on his centenary birthday consists of two volumes: Volume A consists of general essays concerning Professor Yang the person, as well as the authors' impressions and reminiscences of him, which are mainly (but not exclusively) in Chinese. This volume, that is Volume B, consists of over thirty scientific papers in English on subjects broadly related to his work and contributed by two different groups: Professor Yang's colleagues, friends, and former students; and graduates from the Tsinghua University Physics Department or Institute for Advanced Study, who have come under the influence of Professor Yang and are now established in their own careers; review papers presented at a Symposium held in his honor in 2021 are also included. It is hoped that this Festschrift can serve as a fit tribute to Professor Yang's lifelong achievements, and also increase public awareness of the many different sides of this giant — his life, his personality, his work, his influence, as well as what he strives for.
Annotation. This series on Condensed Matter Theories provides a forum for advanced theoretical research in quantum many-body theory. The contributions are highly interdisciplinary, emphasizing common concerns among theorists applying many-particle methods in such diverse areas as solid-state, low-temperature, statistical, nuclear, particle, and biological physics, as well as in quantum field theory, quantum information and the theory of complex systems. The book is a comprehensive collection of many significant topics in the field of condensed matter theories. Each individual contribution is preceded by an extended introduction to the topic treated. Details not normally presented in journal articles can be found in this volume.
The field of highly frustrated magnetism has developed considerably and expanded over the last 15 years. Issuing from canonical geometric frustration of interactions, it now extends over other aspects with many degrees of freedom such as magneto-elastic couplings, orbital degrees of freedom, dilution effects, and electron doping. Its is thus shown here that the concept of frustration impacts on many other fields in physics than magnetism. This book represents a state-of-the-art review aimed at a broad audience with tutorial chapters and more topical ones, encompassing solid-state chemistry, experimental and theoretical physics.
One of the best ways to "lift the lid" on what is happening inside a given material is to study it using nuclear magnetic resonance (NMR). Of particular interest are NMR 1/T1 relaxation rates, which measure how fast energy stored in magnetic nuclei is transferred to surrounding electrons. This thesis develops a detailed, quantitative theory of NMR 1/T1 relaxation rates, and shows for the first time how they could be used to measure the speed at which energy travels in a wide range of magnetic materials. This theory is used to make predictions for"Quantum Spin Nematics", an exotic form of quantum order analogous to a liquid crystal. In order to do so, it is first necessary to unravel how spin nematics transport energy. This thesis proposes a new way to do this, based on the description of quarks in high-energy physics. Experiments to test the ideas presented are now underway in laboratories across the world.