Download Free Embedded Systems And Software Validation Book in PDF and EPUB Free Download. You can read online Embedded Systems And Software Validation and write the review.

Modern embedded systems require high performance, low cost and low power consumption. Such systems typically consist of a heterogeneous collection of processors, specialized memory subsystems, and partially programmable or fixed-function components. This heterogeneity, coupled with issues such as hardware/software partitioning, mapping, scheduling, etc., leads to a large number of design possibilities, making performance debugging and validation of such systems a difficult problem. Embedded systems are used to control safety critical applications such as flight control, automotive electronics and healthcare monitoring. Clearly, developing reliable software/systems for such applications is of utmost importance. This book describes a host of debugging and verification methods which can help to achieve this goal. - Covers the major abstraction levels of embedded systems design, starting from software analysis and micro-architectural modeling, to modeling of resource sharing and communication at the system level - Integrates formal techniques of validation for hardware/software with debugging and validation of embedded system design flows - Includes practical case studies to answer the questions: does a design meet its requirements, if not, then which parts of the system are responsible for the violation, and once they are identified, then how should the design be suitably modified?
When architecting dependable systems, fault tolerance is required to improve the overall system robustness. Many studies have been proposed, but the solutions are usually commissioned late during the design and implementation phases of the software life-cycle (e.g., Java and Windows NT exception handling), thus reducing the error recovery effectiveness. Since the system design typically models only normal behaviors of the system while ignoring exceptional ones, the generated system implementation is unable to handle abnormal events. Consequently, the system may fail in unexpected ways due to some faults. Researchers have advocated that fault tolerance management during the entire life-cycle improves the overall system robustness and that different classes of exceptions must be identified for each identified phase of software development, depending on the abstraction level of the software system being modeled. This book builds on this trend and investigates how fault tolerance mechanisms can be used when engineering a software system. New problems will arise, new models are needed at different abstraction levels, methodologies for mode driven engineering of such systems must be defined, new technologies are required, and new validation and verification environments are necessary.
Address Errors before Users Find ThemUsing a mix-and-match approach, Software Test Attacks to Break Mobile and Embedded Devices presents an attack basis for testing mobile and embedded systems. Designed for testers working in the ever-expanding world of "smart" devices driven by software, the book focuses on attack-based testing that can be used by
Until the late 1980s, information processing was associated with large mainframe computers and huge tape drives. During the 1990s, this trend shifted toward information processing with personal computers, or PCs. The trend toward miniaturization continues and in the future the majority of information processing systems will be small mobile computers, many of which will be embedded into larger products and interfaced to the physical environment. Hence, these kinds of systems are called embedded systems. Embedded systems together with their physical environment are called cyber-physical systems. Examples include systems such as transportation and fabrication equipment. It is expected that the total market volume of embedded systems will be significantly larger than that of traditional information processing systems such as PCs and mainframes. Embedded systems share a number of common characteristics. For example, they must be dependable, efficient, meet real-time constraints and require customized user interfaces (instead of generic keyboard and mouse interfaces). Therefore, it makes sense to consider common principles of embedded system design. Embedded System Design starts with an introduction into the area and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, like real-time operating systems. The book also discusses evaluation and validation techniques for embedded systems. Furthermore, the book presents an overview of techniques for mapping applications to execution platforms. Due to the importance of resource efficiency, the book also contains a selected set of optimization techniques for embedded systems, including special compilation techniques. The book closes with a brief survey on testing. Embedded System Design can be used as a text book for courses on embedded systems and as a source which provides pointers to relevant material in the area for PhD students and teachers. It assumes a basic knowledge of information processing hardware and software. Courseware related to this book is available at http://ls12-www.cs.tu-dortmund.de/~marwedel.
A classic book for professional embedded system designers, now in an affordable paperback edition. This book distills the experience of more than 90 design reviews on real embedded systems into a set of bite-size lessons learned in the areas of software development process, requirements, architecture, design, implementation, verification & validation, and critical system properties. This is a concept book rather than a cut-and-paste the code book.Each chapter describes an area that tends to be a problem in embedded system design, symptoms that tend to indicate you need to make changes, the risks of not fixing problems in this area, and concrete ways to make your embedded system software better. Each of the 29 chapters is self-sufficient, permitting developers with a busy schedule to cherry-pick the best ideas to make their systems better right away.If you are relatively new to the area but have already learned the basics, this book will be an invaluable asset for taking your game to the next level. If you are experienced, this book provides a way to fill in any gaps. Once you have mastered this material, the book will serve as a source of reminders to make sure you haven't forgotten anything as you plan your next project. This is version 1.1 with some minor revisions from the 2010 hardcover edition. This is a paperback print-on-demand edition produced by Amazon.
HereOCOs the first book written specifically to help medical device and software engineers, QA and compliance professionals, and corporate business managers better understand and implement critical verification and validation processes for medical device software.Offering you a much broader, higher-level picture than other books in this field, this book helps you think critically about software validation -- to build confidence in your softwareOCOs safety and effectiveness. The book presents validation activities for each phase of the development lifecycle and shows: why these activities are important and add value; how to undertake them; and what outputs need to be created to document the validation process.From software embedded within medical devices, to software that performs as a medical device itself, this comprehensive book explains how properly handled validation throughout the development lifecycle can help bring medical devices to completion sooner, at higher quality, in compliance with regulations."
This book introduces a modern approach to embedded system design, presenting software design and hardware design in a unified manner. It covers trends and challenges, introduces the design and use of single-purpose processors ("hardware") and general-purpose processors ("software"), describes memories and buses, illustrates hardware/software tradeoffs using a digital camera example, and discusses advanced computation models, controls systems, chip technologies, and modern design tools. For courses found in EE, CS and other engineering departments.
Almost each and every electronic gadget around us is an embedded system, for example: Smart phone, palmtop, digital watch, digital camera, printer, scanner, washer machine control panel, home security system, and many more. Embedded systems have revolutionized our society into a digital world due to the fact that they are microcontroller-based, compact in sizes, reliable in performance, and cheaper in cost. Book ContentsThis book will assist you to learn about embedded systems, its design and development process. Four serial phases: plan, design, integrated development (ID), design verification and validation (DV&V) are presented and discussed in this book.This book begins by introducing what the embedded system basics are. Chapter 1 present classification and aspect of embedded systems, describes embedded systems' hardware and software characteristics. Then it is continued by chapter 2 to depict a time-task span of the embedded system product development process.Chapter 3, 4, 5, and 6, each describes the four phases of the design and development process respectively, which are Plan (Chapter 3), Design (chapter 4), Integrated Development (Chapter 5), Design Verification and Validation (Chapter 6). Plan phase (Chapter 3) describes product requirement, cost analysis, development strategy, management plan, development methodology, design tools and equipment.Design phase (Chapter 4) go over each design process flows, and present descriptions on: hardware board design process, hardware PCB design process, signal integrity analysis and simulation, software design process, and FPGA design process.Integrated Development phase (Chapter 5) discuss on: mechanical and PCB preparations, parts acquisition, FPGA preparation, PCB assembly, hardware testing and debug, hardware/software integrated development, and virtual prototype.Design Verification and Validation phase (Chapter 6) present appearance inspection, functional testing, characteristics and measurements, performance testing, and ESD, EMC, safety testing.Appendixes in this book provide tables and descriptions on hardware and software design checklists, guidelines, and development tools for reference. Bold texts in the paragraphs shall represent a development process name, phase name, step name, or a term of the glossary, or an emphasis.Audience: This book is intentionally written for following audience: -Managers and team leaders who need to manage and guide embedded system design and development process effectively.-Engineers and technicians who want to speed up and optimize embedded system design and development process.-New graduates and students who want to study and learn embedded system design and development process.-Interested readers who want explore embedded system design and development process.
Due to the decreasing production costs of IT systems, applications that had to be realised as expensive PCBs formerly, can now be realised as a system-on-chip. Furthermore, low cost broadband communication media for wide area communication as well as for the realisation of local distributed systems are available. Typically the market requires IT systems that realise a set of specific features for the end user in a given environment, so called embedded systems. Some examples for such embedded systems are control systems in cars, airplanes, houses or plants, information and communication devices like digital TV, mobile phones or autonomous systems like service- or edutainment robots. For the design of embedded systems the designer has to tackle three major aspects: The application itself including the man-machine interface, The (target) architecture of the system including all functional and non-functional constraints and, the design methodology including modelling, specification, synthesis, test and validation. The last two points are a major focus of this book. This book documents the high quality approaches and results that were presented at the International Workshop on Distributed and Parallel Embedded Systems (DIPES 2000), which was sponsored by the International Federation for Information Processing (IFIP), and organised by IFIP working groups WG10.3, WG10.4 and WG10.5. The workshop took place on October 18-19, 2000, in Schloß Eringerfeld near Paderborn, Germany. Architecture and Design of Distributed Embedded Systems is organised similar to the workshop. Chapters 1 and 4 (Methodology I and II) deal with different modelling and specification paradigms and the corresponding design methodologies. Generic system architectures for different classes of embedded systems are presented in Chapter 2. In Chapter 3 several design environments for the support of specific design methodologies are presented. Problems concerning test and validation are discussed in Chapter 5. The last two chapters include distribution and communication aspects (Chapter 6) and synthesis techniques for embedded systems (Chapter 7). This book is essential reading for computer science researchers and application developers.
New manufacturing technologies have made possible the integration of entire systems on a single chip. This new design paradigm, termed system-on-chip (SOC), together with its associated manufacturing problems, represents a real challenge for designers. SOC is also reshaping approaches to test and validation activities. These are beginning to migrate from the traditional register-transfer or gate levels of abstraction to the system level. Until now, test and validation have not been supported by system-level design tools so designers have lacked the infrastructure to exploit all the benefits stemming from the adoption of the system level of abstraction. Research efforts are already addressing this issue. This monograph provides a state-of-the-art overview of the current validation and test techniques by covering all aspects of the subject including: modeling of bugs and defects; stimulus generation for validation and test purposes (including timing errors; design for testability.