Download Free Embedded Hardware Know It All Book in PDF and EPUB Free Download. You can read online Embedded Hardware Know It All and write the review.

The Newnes Know It All Series takes the best of what our authors have written to create hard-working desk references that will be an engineer's first port of call for key information, design techniques and rules of thumb. Guaranteed not to gather dust on a shelf!Circuit design using microcontrollers is both a science and an art. This book covers it all. It details all of the essential theory and facts to help an engineer design a robust embedded system. Processors, memory, and the hot topic of interconnects (I/O) are completely covered. Our authors bring a wealth of experience and ideas; this is a must-own book for any embedded designer.*A 360 degree view from best-selling authors including Jack Ganssle, Tammy Noergard, and Fred Eady*Key facts, techniques, and applications fully detailed*The ultimate hard-working desk reference: all the essential information, techniques, and tricks of the trade in one volume
The Newnes Know It All Series takes the best of what our authors have written to create hard-working desk references that will be an engineer's first port of call for key information, design techniques and rules of thumb. Guaranteed not to gather dust on a shelf! Embedded software is present everywhere - from a garage door opener to implanted medical devices to multicore computer systems. This book covers the development and testing of embedded software from many different angles and using different programming languages. Optimization of code, and the testing of that code, are detailed to enable readers to create the best solutions on-time and on-budget. Bringing together the work of leading experts in the field, this a comprehensive reference that every embedded developer will need! Proven, real-world advice and guidance from such "name” authors as Tammy Noergard, Jen LaBrosse, and Keith Curtis Popular architectures and languages fully discussed Gives a comprehensive, detailed overview of the techniques and methodologies for developing effective, efficient embedded software
Interested in developing embedded systems? Since they donâ??t tolerate inefficiency, these systems require a disciplined approach to programming. This easy-to-read guide helps you cultivate a host of good development practices, based on classic software design patterns and new patterns unique to embedded programming. Learn how to build system architecture for processors, not operating systems, and discover specific techniques for dealing with hardware difficulties and manufacturing requirements. Written by an expert whoâ??s created embedded systems ranging from urban surveillance and DNA scanners to childrenâ??s toys, this book is ideal for intermediate and experienced programmers, no matter what platform you use. Optimize your system to reduce cost and increase performance Develop an architecture that makes your software robust in resource-constrained environments Explore sensors, motors, and other I/O devices Do more with less: reduce RAM consumption, code space, processor cycles, and power consumption Learn how to update embedded code directly in the processor Discover how to implement complex mathematics on small processors Understand what interviewers look for when you apply for an embedded systems job "Making Embedded Systems is the book for a C programmer who wants to enter the fun (and lucrative) world of embedded systems. Itâ??s very well writtenâ??entertaining, evenâ??and filled with clear illustrations." â??Jack Ganssle, author and embedded system expert.
A PRACTICAL GUIDE TO HARDWARE FUNDAMENTALS Embedded Systems Hardware for Software Engineers describes the electrical and electronic circuits that are used in embedded systems, their functions, and how they can be interfaced to other devices. Basic computer architecture topics, memory, address decoding techniques, ROM, RAM, DRAM, DDR, cache memory, and memory hierarchy are discussed. The book covers key architectural features of widely used microcontrollers and microprocessors, including Microchip's PIC32, ATMEL's AVR32, and Freescale's MC68000. Interfacing to an embedded system is then described. Data acquisition system level design considerations and a design example are presented with real-world parameters and characteristics. Serial interfaces such as RS-232, RS-485, PC, and USB are addressed and printed circuit boards and high-speed signal propagation over transmission lines are covered with a minimum of math. A brief survey of logic families of integrated circuits and programmable logic devices is also contained in this in-depth resource. COVERAGE INCLUDES: Architecture examples Memory Memory address decoding Read-only memory and other related devices Input and output ports Analog-to-digital and digital-to-analog converters Interfacing to external devices Transmission lines Logic families of integrated circuits and their signaling characteristics The printed circuit board Programmable logic devices Test equipment: oscilloscopes and logic analyzers
You can find them in your wristwatch or MP3 player; they perform specific functions in washing machines, traffic lights, and even pacemakers. Embedded systems are pervasive, ubiquitous, and widespread throughout our daily lives. Developing these real-time embedded products requires an understanding of the interactions between different disciplines,
Embedded Systems Architecture is a practical and technical guide to understanding the components that make up an embedded system's architecture. This book is perfect for those starting out as technical professionals such as engineers, programmers and designers of embedded systems; and also for students of computer science, computer engineering and electrical engineering. It gives a much-needed 'big picture' for recently graduated engineers grappling with understanding the design of real-world systems for the first time, and provides professionals with a systems-level picture of the key elements that can go into an embedded design, providing a firm foundation on which to build their skills. - Real-world approach to the fundamentals, as well as the design and architecture process, makes this book a popular reference for the daunted or the inexperienced: if in doubt, the answer is in here! - Fully updated with new coverage of FPGAs, testing, middleware and the latest programming techniques in C, plus complete source code and sample code, reference designs and tools online make this the complete package - Visit the companion web site at http://booksite.elsevier.com/9780123821966/ for source code, design examples, data sheets and more - A true introductory book, provides a comprehensive get up and running reference for those new to the field, and updating skills: assumes no prior knowledge beyond undergrad level electrical engineering - Addresses the needs of practicing engineers, enabling it to get to the point more directly, and cover more ground. Covers hardware, software and middleware in a single volume - Includes a library of design examples and design tools, plus a complete set of source code and embedded systems design tutorial materials from companion website
Intelligent readers who want to build their own embedded computer systems-- installed in everything from cell phones to cars to handheld organizers to refrigerators-- will find this book to be the most in-depth, practical, and up-to-date guide on the market. Designing Embedded Hardware carefully steers between the practical and philosophical aspects, so developers can both create their own devices and gadgets and customize and extend off-the-shelf systems. There are hundreds of books to choose from if you need to learn programming, but only a few are available if you want to learn to create hardware. Designing Embedded Hardware provides software and hardware engineers with no prior experience in embedded systems with the necessary conceptual and design building blocks to understand the architectures of embedded systems. Written to provide the depth of coverage and real-world examples developers need, Designing Embedded Hardware also provides a road-map to the pitfalls and traps to avoid in designing embedded systems. Designing Embedded Hardware covers such essential topics as: The principles of developing computer hardware Core hardware designs Assembly language concepts Parallel I/O Analog-digital conversion Timers (internal and external) UART Serial Peripheral Interface Inter-Integrated Circuit Bus Controller Area Network (CAN) Data Converter Interface (DCI) Low-power operation This invaluable and eminently useful book gives you the practical tools and skills to develop, build, and program your own application-specific computers.
Simon introduces the broad range of applications for embedded software and then reviews each major issue facing developers, offering practical solutions, techniques, and good habits that apply no matter which processor, real-time operating systems, methodology, or application is used.
Embedded computer systems literally surround us: they're in our cell phones, PDAs, cars, TVs, refrigerators, heating systems, and more. In fact, embedded systems are one of the most rapidly growing segments of the computer industry today.Along with the growing list of devices for which embedded computer systems are appropriate, interest is growing among programmers, hobbyists, and engineers of all types in how to design and build devices of their own. Furthermore, the knowledge offered by this book into the fundamentals of these computer systems can benefit anyone who has to evaluate and apply the systems.The second edition of Designing Embedded Hardware has been updated to include information on the latest generation of processors and microcontrollers, including the new MAXQ processor. If you're new to this and don't know what a MAXQ is, don't worry--the book spells out the basics of embedded design for beginners while providing material useful for advanced systems designers.Designing Embedded Hardware steers a course between those books dedicated to writing code for particular microprocessors, and those that stress the philosophy of embedded system design without providing any practical information. Having designed 40 embedded computer systems of his own, author John Catsoulis brings a wealth of real-world experience to show readers how to design and create entirely new embedded devices and computerized gadgets, as well as how to customize and extend off-the-shelf systems.Loaded with real examples, this book also provides a roadmap to the pitfalls and traps to avoid. Designing Embedded Hardware includes: The theory and practice of embedded systems Understanding schematics and data sheets Powering an embedded system Producing and debugging an embedded system Processors such as the PIC, Atmel AVR, and Motorola 68000-series Digital Signal Processing (DSP) architectures Protocols (SPI and I2C) used to add peripherals RS-232C, RS-422, infrared communication, and USB CAN and Ethernet networking Pulse Width Monitoring and motor control If you want to build your own embedded system, or tweak an existing one, this invaluable book gives you the understanding and practical skills you need.
Review of electronics fundamentals -- Microcontroller concepts -- Worst-case timing, loading, analysis, and design -- Memory technologies and interfacing -- CPU bus interface and timing -- A detailed design example -- Programmable logic devices -- Basic I/O interfaces -- Other interfaces and bus cycles -- Other useful stuff -- Other interfaces.