Download Free Elliptic Diophantine Equations Book in PDF and EPUB Free Download. You can read online Elliptic Diophantine Equations and write the review.

This book presents in a unified and concrete way the beautiful and deep mathematics - both theoretical and computational - on which the explicit solution of an elliptic Diophantine equation is based. It collects numerous results and methods that are scattered in the literature. Some results are hidden behind a number of routines in software packages, like Magma and Maple; professional mathematicians very often use these routines just as a black-box, having little idea about the mathematical treasure behind them. Almost 20 years have passed since the first publications on the explicit solution of elliptic Diophantine equations with the use of elliptic logarithms. The "art" of solving this type of equation has now reached its full maturity. The author is one of the main persons that contributed to the development of this art. The monograph presents a well-balanced combination of a variety of theoretical tools (from Diophantine geometry, algebraic number theory, theory of linear forms in logarithms of various forms - real/complex and p-adic elliptic - and classical complex analysis), clever computational methods and techniques (LLL algorithm and de Weger's reduction technique, AGM algorithm, Zagier's technique for computing elliptic integrals), ready-to-use computer packages. A result is the solution in practice of a large general class of Diophantine equations.
It is possible to write endlessly on elliptic curves. (This is not a threat.) We deal here with diophantine problems, and we lay the foundations, especially for the theory of integral points. We review briefly the analytic theory of the Weierstrass function, and then deal with the arithmetic aspects of the addition formula, over complete fields and over number fields, giving rise to the theory of the height and its quadraticity. We apply this to integral points, covering the inequalities of diophantine approximation both on the multiplicative group and on the elliptic curve directly. Thus the book splits naturally in two parts. The first part deals with the ordinary arithmetic of the elliptic curve: The transcendental parametrization, the p-adic parametrization, points of finite order and the group of rational points, and the reduction of certain diophantine problems by the theory of heights to diophantine inequalities involving logarithms. The second part deals with the proofs of selected inequalities, at least strong enough to obtain the finiteness of integral points.
This book tells the story of Diophantine analysis, a subject that, owing to its thematic proximity to algebraic geometry, became fashionable in the last half century and has remained so ever since. This new treatment of the methods of Diophantus--a person whose very existence has long been doubted by most historians of mathematics--will be accessible to readers who have taken some university mathematics. It includes the elementary facts of algebraic geometry indispensable for its understanding. The heart of the book is a fascinating account of the development of Diophantine methods during the.
The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.
A coherent account of the computational methods used to solve diophantine equations.
Describes the latest developments in number theory by looking at the Birch and Swinnerton-Dyer Conjecture.
The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, now that the book appears in English, close studyand emulation. In particular those emphases allow him to devote the eighth chapter to an analysis of the interrelationship of the class number of algebraic number fields involved and the bounds on the heights of thesolutions of the diophantine equations. Those ideas warrant further development. The final chapter deals with effective aspects of the Hilbert Irreducibility Theorem, harkening back to earlier work of the author. There is no other congenial entry point to the ideas of the last two chapters in the literature.
Eugène Charles Catalan made his famous conjecture – that 8 and 9 are the only two consecutive perfect powers of natural numbers – in 1844 in a letter to the editor of Crelle’s mathematical journal. One hundred and fifty-eight years later, Preda Mihailescu proved it. Catalan’s Conjecture presents this spectacular result in a way that is accessible to the advanced undergraduate. The author dissects both Mihailescu’s proof and the earlier work it made use of, taking great care to select streamlined and transparent versions of the arguments and to keep the text self-contained. Only in the proof of Thaine’s theorem is a little class field theory used; it is hoped that this application will motivate the interested reader to study the theory further. Beautifully clear and concise, this book will appeal not only to specialists in number theory but to anyone interested in seeing the application of the ideas of algebraic number theory to a famous mathematical problem.
This is a integrated presentation of the theory of exponential diophantine equations. The authors present, in a clear and unified fashion, applications to exponential diophantine equations and linear recurrence sequences of the Gelfond-Baker theory of linear forms in logarithms of algebraic numbers. Topics covered include the Thue equations, the generalised hyperelliptic equation, and the Fermat and Catalan equations. The necessary preliminaries are given in the first three chapters. Each chapter ends with a section giving details of related results.