Download Free Elements Of The Method Of Least Squares Book in PDF and EPUB Free Download. You can read online Elements Of The Method Of Least Squares and write the review.

Since their emergence, finite element methods have taken a place as one of the most versatile and powerful methodologies for the approximate numerical solution of Partial Differential Equations. These methods are used in incompressible fluid flow, heat, transfer, and other problems. This book provides researchers and practitioners with a concise guide to the theory and practice of least-square finite element methods, their strengths and weaknesses, established successes, and open problems.
This is the first monograph on the subject, providing a comprehensive introduction to the LSFEM method for numerical solution of PDEs. LSFEM is simple, efficient and robust, and can solve a wide range of problems in fluid dynamics and electromagnetics.
The method of least squares was discovered by Gauss in 1795. It has since become the principal tool to reduce the influence of errors when fitting models to given observations. Today, applications of least squares arise in a great number of scientific areas, such as statistics, geodetics, signal processing, and control. In the last 20 years there has been a great increase in the capacity for automatic data capturing and computing. Least squares problems of large size are now routinely solved. Tremendous progress has been made in numerical methods for least squares problems, in particular for generalized and modified least squares problems and direct and iterative methods for sparse problems. Until now there has not been a monograph that covers the full spectrum of relevant problems and methods in least squares. This volume gives an in-depth treatment of topics such as methods for sparse least squares problems, iterative methods, modified least squares, weighted problems, and constrained and regularized problems. The more than 800 references provide a comprehensive survey of the available literature on the subject.
Develops the full power of the least-squares method Enables engineers and scientists to apply the method to their specific problem Deals with linear as well as with non-linear least-squares, parametric as well as non-parametric methods
This is the first monograph on the subject, providing a comprehensive introduction to the LSFEM method for numerical solution of PDEs. LSFEM is simple, efficient and robust, and can solve a wide range of problems in fluid dynamics and electromagnetics.
This is the first book devoted entirely to total least squares. The authors give a unified presentation of the TLS problem. A description of its basic principles are given, the various algebraic, statistical and sensitivity properties of the problem are discussed, and generalizations are presented. Applications are surveyed to facilitate uses in an even wider range of applications. Whenever possible, comparison is made with the well-known least squares methods. A basic knowledge of numerical linear algebra, matrix computations, and some notion of elementary statistics is required of the reader; however, some background material is included to make the book reasonably self-contained.
Nowadays applied work in business and economics requires a solid understanding of econometric methods to support decision-making. Combining a solid exposition of econometric methods with an application-oriented approach, this rigorous textbook provides students with a working understanding and hands-on experience of current econometrics. Taking a 'learning by doing' approach, it covers basic econometric methods (statistics, simple and multiple regression, nonlinear regression, maximum likelihood, and generalized method of moments), and addresses the creative process of model building with due attention to diagnostic testing and model improvement. Its last part is devoted to two major application areas: the econometrics of choice data (logit and probit, multinomial and ordered choice, truncated and censored data, and duration data) and the econometrics of time series data (univariate time series, trends, volatility, vector autoregressions, and a brief discussion of SUR models, panel data, and simultaneous equations). · Real-world text examples and practical exercise questions stimulate active learning and show how econometrics can solve practical questions in modern business and economic management. · Focuses on the core of econometrics, regression, and covers two major advanced topics, choice data with applications in marketing and micro-economics, and time series data with applications in finance and macro-economics. · Learning-support features include concise, manageable sections of text, frequent cross-references to related and background material, summaries, computational schemes, keyword lists, suggested further reading, exercise sets, and online data sets and solutions. · Derivations and theory exercises are clearly marked for students in advanced courses. This textbook is perfect for advanced undergraduate students, new graduate students, and applied researchers in econometrics, business, and economics, and for researchers in other fields that draw on modern applied econometrics.
This Classic edition includes a new appendix which summarizes the major developments since the book was originally published in 1974. The additions are organized in short sections associated with each chapter. An additional 230 references have been added, bringing the bibliography to over 400 entries. Appendix C has been edited to reflect changes in the associated software package and software distribution method.
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.