Download Free Elements Of Statistics Book in PDF and EPUB Free Download. You can read online Elements Of Statistics and write the review.

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
Statistical disclosure control is the discipline that deals with producing statistical data that are safe enough to be released to external researchers. This book concentrates on the methodology of the area. It deals with both microdata (individual data) and tabular (aggregated) data. The book attempts to develop the theory from what can be called the paradigm of statistical confidentiality: to modify unsafe data in such a way that safe (enough) data emerge, with minimum information loss. This book discusses what safe data, are, how information loss can be measured, and how to modify the data in a (near) optimal way. Once it has been decided how to measure safety and information loss, the production of safe data from unsafe data is often a matter of solving an optimization problem. Several such problems are discussed in the book, and most of them turn out to be hard problems that can be solved only approximately. The authors present new results that have not been published before. The book is not a description of an area that is closed, but, on the contrary, one that still has many spots awaiting to be more fully explored. Some of these are indicated in the book. The book will be useful for official, social and medical statisticians and others who are involved in releasing personal or business data for statistical use. Operations researchers may be interested in the optimization problems involved, particularly for the challenges they present. Leon Willenborg has worked at the Department of Statistical Methods at Statistics Netherlands since 1983, first as a researcher and since 1989 as a senior researcher. Since 1989 his main field of research and consultancy has been statistical disclosure control. From 1996-1998 he was the project coordinator of the EU co-funded SDC project.
This book represents a crucial resource for students taking a required statistics course who are intimidated by statistical symbols, formulae, and daunting equations. It will serve to prepare the reader to achieve the level of statistical literacy required not only to understand basic statistics, but also to embark on their advanced-level statistics courses without anxiety. The application of statistics in social research has recently become imperative. However, a gap usually exists between the time when students take their first statistics course and when they engage in their first serious research project, meaning that they often donâ (TM)t remember basic statistics well enough to apply it effectively in their research. In this sense, this book will also serve as an excellent â oedesk reference, â â oerefresher, â or â oecore conceptâ text for burgeoning researchers interning or working as a research assistant or research associate. Furthermore, the text is written in a self-help, hands-on learning style so the reader can easily attain the skills needed to achieve a basic understanding of statistics found in articles and presentations.
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Statistics and computing share many close relationships. Computing now permeates every aspect of statistics, from pure description to the development of statistical theory. At the same time, the computational methods used in statistical work span much of computer science. Elements of Statistical Computing covers the broad usage of computing in statistics. It provides a comprehensive account of the most important computational statistics. Included are discussions of numerical analysis, numerical integration, and smoothing. The author give special attention to floating point standards and numerical analysis; iterative methods for both linear and nonlinear equation, such as Gauss-Seidel method and successive over-relaxation; and computational methods for missing data, such as the EM algorithm. Also covered are new areas of interest, such as the Kalman filter, projection-pursuit methods, density estimation, and other computer-intensive techniques.
This book provides an introduction to elementary probability and to Bayesian statistics using de Finetti's subjectivist approach. One of the features of this approach is that it does not require the introduction of sample space – a non-intrinsic concept that makes the treatment of elementary probability unnecessarily complicate – but introduces as fundamental the concept of random numbers directly related to their interpretation in applications. Events become a particular case of random numbers and probability a particular case of expectation when it is applied to events. The subjective evaluation of expectation and of conditional expectation is based on an economic choice of an acceptable bet or penalty. The properties of expectation and conditional expectation are derived by applying a coherence criterion that the evaluation has to follow. The book is suitable for all introductory courses in probability and statistics for students in Mathematics, Informatics, Engineering, and Physics.
This book covers all the topics found in introductory descriptive statistics courses, including simple linear regression and time series analysis, the fundamentals of inferential statistics (probability theory, random sampling and estimation theory), and inferential statistics itself (confidence intervals, testing). Each chapter starts with the necessary theoretical background, which is followed by a variety of examples. The core examples are based on the content of the respective chapter, while the advanced examples, designed to deepen students’ knowledge, also draw on information and material from previous chapters. The enhanced online version helps students grasp the complexity and the practical relevance of statistical analysis through interactive examples and is suitable for undergraduate and graduate students taking their first statistics courses, as well as for undergraduate students in non-mathematical fields, e.g. economics, the social sciences etc.
Will provide a more elementary introduction to these topics than other books available; Gentle is the author of two other Springer books