Download Free Elements Of Statistical Thermodynamics Book in PDF and EPUB Free Download. You can read online Elements Of Statistical Thermodynamics and write the review.

This concise, elementary treatment illustrates the ways in which an atomic-molecular perspective yields new insights and powers operative in the realms of macroscopic thermodynamics. Starting with an analysis of some very simple microcanonical ensembles, it proceeds to the Boltzmann distribution law and a systematic exploration of the proper formulation, evaluation, and application of partition functions. The concepts of equilibrium and entropy thus acquire new significance, and readers discover how thermodynamic parameters may be calculated from spectroscopic data. Encompassing virtually all of the forms of statistical mechanics customary to undergraduate physical chemistry books, this brief text requires prior acquaintance with only the rudiments of the calculus and a few of the simplest propositions of classical thermodynamics. Appropriate for introductory college chemistry courses, it further lends itself to use as a supplementary text for independent study by more advanced students.
This self-contained primer covers statistical thermodynamics in a rigorous yet approachable manner, making it the perfect text for undergraduates.
Four-part treatment covers principles of quantum statistical mechanics, systems composed of independent molecules or other independent subsystems, and systems of interacting molecules, concluding with a consideration of quantum statistics.
A Course in Statistical Thermodynamics explores the physical aspects of the methodology of statistical thermodynamics without the use of advanced mathematical methods. This book is divided into 14 chapters that focus on a correct statement of the Gibbsian ensemble theory couched in quantum-mechanical terms throughout. The introductory chapters emphasize the concept of equilibrium, phase space, the principle of their quantization, and the fundamentals of quantum mechanics and spectroscopy. These topics are followed by an exposition of the statistical method, revealing that the structure of the physical theory is closely modeled on mathematical statistics. A chapter focuses on stationary ensembles and the restatement of the First, Second, and Third Law of Thermodynamics. The remaining chapters highlight the various specialized applications of statistical thermodynamics, including real and degenerate gases, simple solids, radiation, magnetic systems, nonequilibrium states, and fluctuations. These chapters also provide a rigorous derivation of Boltzmann's equation, the H-theorem, and the vexing paradox that arises when microscopic reversibility must be reconciled with irreversible behavior in the large. This book can be used for two semesters in the junior or senior years, or as a first-year graduate course in statistical thermodynamics.
This introductory textbook for standard undergraduate courses in thermodynamics has been completely rewritten to explore a greater number of topics, more clearly and concisely. Starting with an overview of important quantum behaviours, the book teaches students how to calculate probabilities in order to provide a firm foundation for later chapters. It introduces the ideas of classical thermodynamics and explores them both in general and as they are applied to specific processes and interactions. The remainder of the book deals with statistical mechanics. Each topic ends with a boxed summary of ideas and results, and every chapter contains numerous homework problems, covering a broad range of difficulties. Answers are given to odd-numbered problems, and solutions to even-numbered problems are available to instructors at www.cambridge.org/9781107694927.