Download Free Elements Of Signal Detection And Estimation Book in PDF and EPUB Free Download. You can read online Elements Of Signal Detection And Estimation and write the review.

The purpose of this book is to introduce the reader to the basic theory of signal detection and estimation. It is assumed that the reader has a working knowledge of applied probabil ity and random processes such as that taught in a typical first-semester graduate engineering course on these subjects. This material is covered, for example, in the book by Wong (1983) in this series. More advanced concepts in these areas are introduced where needed, primarily in Chapters VI and VII, where continuous-time problems are treated. This book is adapted from a one-semester, second-tier graduate course taught at the University of Illinois. However, this material can also be used for a shorter or first-tier course by restricting coverage to Chapters I through V, which for the most part can be read with a background of only the basics of applied probability, including random vectors and conditional expectations. Sufficient background for the latter option is given for exam pIe in the book by Thomas (1986), also in this series.
This volume provides an introduction to signal-detection theory, a subject fundamental to the design of detectors of weak signals in the presence of random noise, and, in particular, to the design of optimal and near optimal receivers of communication, radar, sonar and optical signals.
Covering the fundamentals of detection and estimation theory, this systematic guide describes statistical tools that can be used to analyze, design, implement and optimize real-world systems. Detailed derivations of the various statistical methods are provided, ensuring a deeper understanding of the basics. Packed with practical insights, it uses extensive examples from communication, telecommunication and radar engineering to illustrate how theoretical results are derived and applied in practice. A unique blend of theory and applications and over 80 analytical and computational end-of-chapter problems make this an ideal resource for both graduate students and professional engineers.
"For those involved in the design and implementation of signal processing algorithms, this book strikes a balance between highly theoretical expositions and the more practical treatments, covering only those approaches necessary for obtaining an optimal estimator and analyzing its performance. Author Steven M. Kay discusses classical estimation followed by Bayesian estimation, and illustrates the theory with numerous pedagogical and real-world examples."--Cover, volume 1.
This textbook provides a comprehensive and current understanding of signal detection and estimation, including problems and solutions for each chapter. Signal detection plays an important role in fields such as radar, sonar, digital communications, image processing, and failure detection. The book explores both Gaussian detection and detection of Markov chains, presenting a unified treatment of coding and modulation topics. Addresses asymptotic of tests with the theory of large deviations, and robust detection. This text is appropriate for students of Electrical Engineering in graduate courses in Signal Detection and Estimation.
A state-of-the-art review of key topics in medical image perception science and practice, including associated techniques, illustrations and examples. This second edition contains extensive updates and substantial new content. Written by key figures in the field, it covers a wide range of topics including signal detection, image interpretation and advanced image analysis (e.g. deep learning) techniques for interpretive and computational perception. It provides an overview of the key techniques of medical image perception and observer performance research, and includes examples and applications across clinical disciplines including radiology, pathology and oncology. A final chapter discusses the future prospects of medical image perception and assesses upcoming challenges and possibilities, enabling readers to identify new areas for research. Written for both newcomers to the field and experienced researchers and clinicians, this book provides a comprehensive reference for those interested in medical image perception as means to advance knowledge and improve human health.
Time-Frequency Signal Analysis and Processing (TFSAP) is a collection of theory, techniques and algorithms used for the analysis and processing of non-stationary signals, as found in a wide range of applications including telecommunications, radar, and biomedical engineering. This book gives the university researcher and R&D engineer insights into how to use TFSAP methods to develop and implement the engineering application systems they require. New to this edition: - New sections on Efficient and Fast Algorithms; a "Getting Started" chapter enabling readers to start using the algorithms on simulated and real examples with the TFSAP toolbox, compare the results with the ones presented in the book and then insert the algorithms in their own applications and adapt them as needed. - Two new chapters and twenty three new sections, including updated references. - New topics including: efficient algorithms for optimal TFDs (with source code), the enhanced spectrogram, time-frequency modelling, more mathematical foundations, the relationships between QTFDs and Wavelet Transforms, new advanced applications such as cognitive radio, watermarking, noise reduction in the time-frequency domain, algorithms for Time-Frequency Image Processing, and Time-Frequency applications in neuroscience (new chapter). - A comprehensive tutorial introduction to Time-Frequency Signal Analysis and Processing (TFSAP), accessible to anyone who has taken a first course in signals - Key advances in theory, methodology and algorithms, are concisely presented by some of the leading authorities on the respective topics - Applications written by leading researchers showing how to use TFSAP methods
This is a uniquely comprehensive reference that summarizes the state of the art of signal processing theory and techniques for solving emerging problems in neuroscience, and which clearly presents new theory, algorithms, software and hardware tools that are specifically tailored to the nature of the neurobiological environment. It gives a broad overview of the basic principles, theories and methods in statistical signal processing for basic and applied neuroscience problems.Written by experts in the field, the book is an ideal reference for researchers working in the field of neural engineering, neural interface, computational neuroscience, neuroinformatics, neuropsychology and neural physiology. By giving a broad overview of the basic principles, theories and methods, it is also an ideal introduction to statistical signal processing in neuroscience. - A comprehensive overview of the specific problems in neuroscience that require application of existing and development of new theory, techniques, and technology by the signal processing community - Contains state-of-the-art signal processing, information theory, and machine learning algorithms and techniques for neuroscience research - Presents quantitative and information-driven science that has been, or can be, applied to basic and translational neuroscience problems
Introducing gravitational-wave data analysis, this book is an ideal starting point for researchers entering the field, and researchers currently analyzing data. Detailed derivations of the basic formulae enable readers to apply general statistical concepts to the analysis of gravitational-wave signals. It also discusses new ideas on devising the efficient algorithms.