Download Free Elements Of Mathematical Ecology Book in PDF and EPUB Free Download. You can read online Elements Of Mathematical Ecology and write the review.

An introduction to classical and modern mathematical models, methods, and issues in population ecology.
Intuitive ideas of stability in dynamics of a biological population, community, or ecosystem can be formalized in the framework of corresponding mathematical models. These are often represented by systems of ordinary differential equations or difference equations. Matrices and Graphs covers achievements in the field using concepts from matrix theory and graph theory. The book effectively surveys applications of mathematical results pertinent to issues of theoretical and applied ecology. The only mathematical prerequisite for using Matrices and Graphs is a working knowledge of linear algebra and matrices. The book is ideal for biomathematicians, ecologists, and applied mathematicians doing research on dynamic behavior of model populations and communities consisting of multi-component systems. It will also be valuable as a text for a graduate-level topics course in applied math or mathematical ecology.
The problems of interrelation between human economics and natural environment include scientific, technical, economic, demographic, social, political and other aspects that are studied by scientists of many specialities. One of the important aspects in scientific study of environmental and ecological problems is the development of mathematical and computer tools for rational management of economics and environment. This book introduces a wide range of mathematical models in economics, ecology and environmental sciences to a general mathematical audience with no in-depth experience in this specific area. Areas covered are: controlled economic growth and technological development, world dynamics, environmental impact, resource extraction, air and water pollution propagation, ecological population dynamics and exploitation. A variety of known models are considered, from classical ones (Cobb Douglass production function, Leontief input-output analysis, Solow models of economic dynamics, Verhulst-Pearl and Lotka-Volterra models of population dynamics, and others) to the models of world dynamics and the models of water contamination propagation used after Chemobyl nuclear catastrophe. Special attention is given to modelling of hierarchical regional economic-ecological interaction and technological change in the context of environmental impact. Xlll XIV Construction of Mathematical Models ...
All life is chemical. That fact underpins the developing field of ecological stoichiometry, the study of the balance of chemical elements in ecological interactions. This long-awaited book brings this field into its own as a unifying force in ecology and evolution. Synthesizing a wide range of knowledge, Robert Sterner and Jim Elser show how an understanding of the biochemical deployment of elements in organisms from microbes to metazoa provides the key to making sense of both aquatic and terrestrial ecosystems. After summarizing the chemistry of elements and their relative abundance in Earth's environment, the authors proceed along a line of increasing complexity and scale from molecules to cells, individuals, populations, communities, and ecosystems. The book examines fundamental chemical constraints on ecological phenomena such as competition, herbivory, symbiosis, energy flow in food webs, and organic matter sequestration. In accessible prose and with clear mathematical models, the authors show how ecological stoichiometry can illuminate diverse fields of study, from metabolism to global change. Set to be a classic in the field, Ecological Stoichiometry is an indispensable resource for researchers, instructors, and students of ecology, evolution, physiology, and biogeochemistry. From the foreword by Peter Vitousek: ? "[T]his book represents a significant milestone in the history of ecology. . . . Love it or argue with it--and I do both--most ecologists will be influenced by the framework developed in this book. . . . There are points to question here, and many more to test . . . And if we are both lucky and good, this questioning and testing will advance our field beyond the level achieved in this book. I can't wait to get on with it."
The cycling of elements such as carbon and nitrogen is of central importance in ecology, particularly when humans are causing changes to element cycles on a global scale. In this 1996 book a rigorous mathematical framework is developed to model how element cycles operate and interact in plants and soils, forming the foundations of a new ecosystem theory. From a few basic equations, powerful predictions can be generated covering a wide range of ecological phenomena related to element cycling. These predictions are tested extensively against field and laboratory studies of agricultural and forest ecosystems. This work will be of interest to graduate students and researchers in theoretical ecology, soil science, forestry and biogeochemistry.
General principles; Kinetics; Statics; Dynamics.
Covering the major topics of evolutionary game theory, Game-Theoretical Models in Biology presents both abstract and practical mathematical models of real biological situations. It discusses the static aspects of game theory in a mathematically rigorous way that is appealing to mathematicians. In addition, the authors explore many applications of game theory to biology, making the text useful to biologists as well. The book describes a wide range of topics in evolutionary games, including matrix games, replicator dynamics, the hawk-dove game, and the prisoner’s dilemma. It covers the evolutionarily stable strategy, a key concept in biological games, and offers in-depth details of the mathematical models. Most chapters illustrate how to use MATLAB® to solve various games. Important biological phenomena, such as the sex ratio of so many species being close to a half, the evolution of cooperative behavior, and the existence of adornments (for example, the peacock’s tail), have been explained using ideas underpinned by game theoretical modeling. Suitable for readers studying and working at the interface of mathematics and the life sciences, this book shows how evolutionary game theory is used in the modeling of these diverse biological phenomena.
Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available
This book presents the fundamental theory for non-standard diffusion problems in movement ecology. Lévy processes and anomalous diffusion have shown to be both powerful and useful tools for qualitatively and quantitatively describing a wide variety of spatial population ecological phenomena and dynamics, such as invasion fronts and search strategies. Adopting a self-contained, textbook-style approach, the authors provide the elements of statistical physics and stochastic processes on which the modeling of movement ecology is based and systematically introduce the physical characterization of ecological processes at the microscopic, mesoscopic and macroscopic levels. The explicit definition of these levels and their interrelations is particularly suitable to coping with the broad spectrum of space and time scales involved in bio-ecological problems. Including numerous exercises (with solutions), this text is aimed at graduate students and newcomers in this field at the interface of theoretical ecology, mathematical biology and physics.
This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?