Download Free Elements Of Linear Algebra Book in PDF and EPUB Free Download. You can read online Elements Of Linear Algebra and write the review.

This volume presents a thorough discussion of systems of linear equations and their solutions. Vectors and matrices are introduced as required and an account of determinants is given. Great emphasis has been placed on keeping the presentation as simple as possible, with many illustrative examples. While all mathematical assertions are proved, the student is led to view the mathematical content intuitively, as an aid to understanding.The text treats the coordinate geometry of lines, planes and quadrics, provides a natural application for linear algebra and at the same time furnished a geometrical interpretation to illustrate the algebraic concepts.
This volume presents a thorough discussion of systems of linear equations and their solutions. Vectors and matrices are introduced as required and an account of determinants is given. Great emphasis has been placed on keeping the presentation as simple as possible, with many illustrative examples. While all mathematical assertions are proved, the student is led to view the mathematical content intuitively, as an aid to understanding. The text treats the coordinate geometry of lines, planes and quadrics, provides a natural application for linear algebra and at the same time furnished a geometrical interpretation to illustrate the algebraic concepts.
This set of notes is an activity-oriented introduction to linear and multilinear algebra. The great majority of the most elementary results in these subjects are straightforward and can be verified by the thoughtful student. Indeed, that is the main point of these notes — to convince the beginner that the subject is accessible. In the material that follows there are numerous indicators that suggest activity on the part of the reader: words such as 'proposition', 'example', 'theorem', 'exercise', and 'corollary', if not followed by a proof (and proofs here are very rare) or a reference to a proof, are invitations to verify the assertions made.These notes are intended to accompany an (academic) year-long course at the advanced undergraduate or beginning graduate level. (With judicious pruning most of the material can be covered in a two-term sequence.) The text is also suitable for a lecture-style class, the instructor proving some of the results while leaving others as exercises for the students.This book has tried to keep the facts about vector spaces and those about inner product spaces separate. Many beginning linear algebra texts conflate the material on these two vastly different subjects.
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
This volume contains a collection of clever mathematical applications of linear algebra, mainly in combinatorics, geometry, and algorithms. Each chapter covers a single main result with motivation and full proof in at most ten pages and can be read independently of all other chapters (with minor exceptions), assuming only a modest background in linear algebra. The topics include a number of well-known mathematical gems, such as Hamming codes, the matrix-tree theorem, the Lovasz bound on the Shannon capacity, and a counterexample to Borsuk's conjecture, as well as other, perhaps less popular but similarly beautiful results, e.g., fast associativity testing, a lemma of Steinitz on ordering vectors, a monotonicity result for integer partitions, or a bound for set pairs via exterior products. The simpler results in the first part of the book provide ample material to liven up an undergraduate course of linear algebra. The more advanced parts can be used for a graduate course of linear-algebraic methods or for seminar presentations. Table of Contents: Fibonacci numbers, quickly; Fibonacci numbers, the formula; The clubs of Oddtown; Same-size intersections; Error-correcting codes; Odd distances; Are these distances Euclidean?; Packing complete bipartite graphs; Equiangular lines; Where is the triangle?; Checking matrix multiplication; Tiling a rectangle by squares; Three Petersens are not enough; Petersen, Hoffman-Singleton, and maybe 57; Only two distances; Covering a cube minus one vertex; Medium-size intersection is hard to avoid; On the difficulty of reducing the diameter; The end of the small coins; Walking in the yard; Counting spanning trees; In how many ways can a man tile a board?; More bricks--more walls?; Perfect matchings and determinants; Turning a ladder over a finite field; Counting compositions; Is it associative?; The secret agent and umbrella; Shannon capacity of the union: a tale of two fields; Equilateral sets; Cutting cheaply using eigenvectors; Rotating the cube; Set pairs and exterior products; Index. (STML/53)
This book avoids the traditional definition-theorem-proof format; instead a fresh approach introduces a variety of problems and examples all in a clear and informal style. The in-depth focus on applications separates this book from others, and helps students to see how linear algebra can be applied to real-life situations. Some of the more contemporary topics of applied linear algebra are included here which are not normally found in undergraduate textbooks. Theoretical developments are always accompanied with detailed examples, and each section ends with a number of exercises from which students can gain further insight. Moreover, the inclusion of historical information provides personal insights into the mathematicians who developed this subject. The textbook contains numerous examples and exercises, historical notes, and comments on numerical performance and the possible pitfalls of algorithms. Solutions to all of the exercises are provided, as well as a CD-ROM containing a searchable copy of the textbook.
This book contains an extensive collection of exercises and problems that address relevant topics in linear algebra. Topics that the author finds missing or inadequately covered in most existing books are also included. The exercises will be both interesting and helpful to an average student. Some are fairly routine calculations, while others require serious thought.The format of the questions makes them suitable for teachers to use in quizzes and assigned homework. Some of the problems may provide excellent topics for presentation and discussions. Furthermore, answers are given for all odd-numbered exercises which will be extremely useful for self-directed learners. In each chapter, there is a short background section which includes important definitions and statements of theorems to provide context for the following exercises and problems.