Download Free Elements Of Asymptotic Geometry Book in PDF and EPUB Free Download. You can read online Elements Of Asymptotic Geometry and write the review.

Asymptotic geometry is the study of metric spaces from a large scale point of view, where the local geometry does not come into play. An important class of model spaces are the hyperbolic spaces (in the sense of Gromov), for which the asymptotic geometry is nicely encoded in the boundary at infinity. In the first part of this book, in analogy with the concepts of classical hyperbolic geometry, the authors provide a systematic account of the basic theory of Gromov hyperbolic spaces. These spaces have been studied extensively in the last twenty years and have found applications in group theory, geometric topology, Kleinian groups, as well as dynamics and rigidity theory. In the second part of the book, various aspects of the asymptotic geometry of arbitrary metric spaces are considered. It turns out that the boundary at infinity approach is not appropriate in the general case, but dimension theory proves useful for finding interesting results and applications. The text leads concisely to some central aspects of the theory. Each chapter concludes with a separate section containing supplementary results and bibliographical notes. Here the theory is also illustrated with numerous examples as well as relations to the neighboring fields of comparison geometry and geometric group theory. The book is based on lectures the authors presented at the Steklov Institute in St. Petersburg and the University of Zurich.
Asymptotic geometry is the study of metric spaces from a large scale point of view, where the local geometry does not come into play. An important class of model spaces are the hyperbolic spaces (in the sense of Gromov), for which the asymptotic geometry is nicely encoded in the boundary at infinity. In the first part of this book, in analogy with the concepts of classical hyperbolic geometry, the authors provide a systematic account of the basic theory of Gromov hyperbolic spaces. These spaces have been studied extensively in the last twenty years and have found applications in group theory, geometric topology, Kleinian groups, as well as dynamics and rigidity theory. In the second part of the book, various aspects of the asymptotic geometry of arbitrary metric spaces are considered. It turns out that the boundary at infinity approach is not appropriate in the general case, but dimension theory proves useful for finding interesting results and applications.
This book is a continuation of Asymptotic Geometric Analysis, Part I, which was published as volume 202 in this series. Asymptotic geometric analysis studies properties of geometric objects, such as normed spaces, convex bodies, or convex functions, when the dimensions of these objects increase to infinity. The asymptotic approach reveals many very novel phenomena which influence other fields in mathematics, especially where a large data set is of main concern, or a number of parameters which becomes uncontrollably large. One of the important features of this new theory is in developing tools which allow studying high parametric families. Among the topics covered in the book are measure concentration, isoperimetric constants of log-concave measures, thin-shell estimates, stochastic localization, the geometry of Gaussian measures, volume inequalities for convex bodies, local theory of Banach spaces, type and cotype, the Banach-Mazur compactum, symmetrizations, restricted invertibility, and functional versions of geometric notions and inequalities.
Asymptotic Geometric Analysis is concerned with the geometric and linear properties of finite dimensional objects, normed spaces, and convex bodies, especially with the asymptotics of their various quantitative parameters as the dimension tends to infinity. The deep geometric, probabilistic, and combinatorial methods developed here are used outside the field in many areas of mathematics and mathematical sciences. The Fields Institute Thematic Program in the Fall of 2010 continued an established tradition of previous large-scale programs devoted to the same general research direction. The main directions of the program included: * Asymptotic theory of convexity and normed spaces * Concentration of measure and isoperimetric inequalities, optimal transportation approach * Applications of the concept of concentration * Connections with transformation groups and Ramsey theory * Geometrization of probability * Random matrices * Connection with asymptotic combinatorics and complexity theory These directions are represented in this volume and reflect the present state of this important area of research. It will be of benefit to researchers working in a wide range of mathematical sciences—in particular functional analysis, combinatorics, convex geometry, dynamical systems, operator algebras, and computer science.
A great deal of progress has been made recently in the field of asymptotic formulas that arise in the theory of Dirac and Laplace type operators. Asymptotic Formulae in Spectral Geometry collects these results and computations into one book. Written by a leading pioneer in the field, it focuses on the functorial and special cases methods of computing asymptotic heat trace and heat content coefficients in the heat equation. It incorporates the work of many authors into the presentation, and includes a complete bibliography that serves as a roadmap to the literature on the subject. Geometers, mathematical physicists, and analysts alike will undoubtedly find this book to be the definitive book on the subject
Vol. 1200 of the LNM series deals with the geometrical structure of finite dimensional normed spaces. One of the main topics is the estimation of the dimensions of euclidean and l^n p spaces which nicely embed into diverse finite-dimensional normed spaces. An essential method here is the concentration of measure phenomenon which is closely related to large deviation inequalities in Probability on the one hand, and to isoperimetric inequalities in Geometry on the other. The book contains also an appendix, written by M. Gromov, which is an introduction to isoperimetric inequalities on riemannian manifolds. Only basic knowledge of Functional Analysis and Probability is expected of the reader. The book can be used (and was used by the authors) as a text for a first or second graduate course. The methods used here have been useful also in areas other than Functional Analysis (notably, Combinatorics).