Download Free Elements Of Algebra And Algebraic Computing Book in PDF and EPUB Free Download. You can read online Elements Of Algebra And Algebraic Computing and write the review.

Numerical Modeling in Science and Engineering Myron B. Allen, George F. Pinder, and Ismael Herrera Emphasizing applications, this treatment combines three traditionally distinct disciplines—continuum mechanics, differential equations, and numerical analysis—to provide a unified treatment of numerical modeling of physical systems. Covers basic equations of macroscopic systems, numerical methods, steady state systems, dissipative systems, nondissipative systems, and high order, nonlinear, and coupled systems. 1988 (0 471-80635-8) 418 pp. Mathematical Modeling and Digital Simulation for Engineers and Scientists Second Edition Jon M. Smith Totally updated, this Second Edition reflects the many developments in simulation and computer modeling theory and practice that have occurred over the past decade. It includes a new section on the use of modern numerical methods for generating chaos and simulating random processes, a section on simulator verification, and provides applications of these methods for personal computers. Readers will find a wealth of practical fault detection and isolation techniques for simulator verification, fast functions evaluation techniques, and nested parenthetical forms and Chebyshev economization techniques. 1987 (0 471-08599-5) 430 pp. Numerical Analysis 1987 David F. Griffiths and George Alistair Watson An invaluable guide to the direction of current research in many areas of numerical analysis, this volume will be of great interest to anyone involved in software design, curve and surface fitting, the numerical solution of ordinary, partial, and integro-differential equations, and the real-world application of numerical techniques. 1988 (0 470-21012-5) 300 pp.
Geometric algebra is still treated as an obscure branch of algebra and most books have been written by competent mathematicians in a very abstract style. This restricts the readership of such books especially by programmers working in computer graphics, who simply want guidance on algorithm design. Geometric algebra provides a unified algebraic system for solving a wide variety of geometric problems. John Vince reveals the beauty of this algebraic framework and communicates to the reader new and unusual mathematical concepts using colour illustrations, tabulations, and easy-to-follow algebraic proofs. The book includes many worked examples to show how the algebra works in practice and is essential reading for anyone involved in designing 3D geometric algorithms.
This book provides a systematic approach for the algorithmic formulation and implementation of mathematical operations in computer algebra programming languages. The viewpoint is that mathematical expressions, represented by expression trees, are the data objects of computer algebra programs, and by using a few primitive operations that analyze and
Algorithmic Algebra studies some of the main algorithmic tools of computer algebra, covering such topics as Gröbner bases, characteristic sets, resultants and semialgebraic sets. The main purpose of the book is to acquaint advanced undergraduate and graduate students in computer science, engineering and mathematics with the algorithmic ideas in computer algebra so that they could do research in computational algebra or understand the algorithms underlying many popular symbolic computational systems: Mathematica, Maple or Axiom, for instance. Also, researchers in robotics, solid modeling, computational geometry and automated theorem proving community may find it useful as symbolic algebraic techniques have begun to play an important role in these areas. The book, while being self-contained, is written at an advanced level and deals with the subject at an appropriate depth. The book is accessible to computer science students with no previous algebraic training. Some mathematical readers, on the other hand, may find it interesting to see how algorithmic constructions have been used to provide fresh proofs for some classical theorems. The book also contains a large number of exercises with solutions to selected exercises, thus making it ideal as a textbook or for self-study.
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
Algorithms for Computer Algebra is the first comprehensive textbook to be published on the topic of computational symbolic mathematics. The book first develops the foundational material from modern algebra that is required for subsequent topics. It then presents a thorough development of modern computational algorithms for such problems as multivariate polynomial arithmetic and greatest common divisor calculations, factorization of multivariate polynomials, symbolic solution of linear and polynomial systems of equations, and analytic integration of elementary functions. Numerous examples are integrated into the text as an aid to understanding the mathematical development. The algorithms developed for each topic are presented in a Pascal-like computer language. An extensive set of exercises is presented at the end of each chapter. Algorithms for Computer Algebra is suitable for use as a textbook for a course on algebraic algorithms at the third-year, fourth-year, or graduate level. Although the mathematical development uses concepts from modern algebra, the book is self-contained in the sense that a one-term undergraduate course introducing students to rings and fields is the only prerequisite assumed. The book also serves well as a supplementary textbook for a traditional modern algebra course, by presenting concrete applications to motivate the understanding of the theory of rings and fields.
Now in its third edition, this highly successful textbook is widely regarded as the 'bible of computer algebra'.
A quick guide to computing in algebraic geometry with many explicit computational examples introducing the computer algebra system Singular.