Download Free Elementary Physical Chemistry Book in PDF and EPUB Free Download. You can read online Elementary Physical Chemistry and write the review.

This book is designed for a one-semester course, for undergraduates, not necessarily chemistry majors, who need to know something about physical chemistry. The emphasis is not on mathematical rigor, but subtleties and conceptual difficulties are not hidden. It covers the essential topics in physical chemistry, including the state of matter, thermodynamics, chemical kinetics, phase and chemical equilibria, introduction to quantum theory, and molecular spectroscopy. Supplementary materials are available upon request for all instructors who adopt this book as a course text. Please send your request to [email protected].
Textbook that uniquely integrates physics and chemistry in the study of atmospheric thermodynamics for advanced single-semester courses.
Designed as a one-semester undergraduate course for engineers and materials scientists who need to understand physical chemistry, this book emphasises the behaviour of material from the molecular point of view.
Much of chemistry is motivated by asking 'How'? How do I make a primary alcohol? React a Grignard reagent with formaldehyde. Physical chemistry is motivated by asking 'Why'? The Grignard reagent and formaldehyde follow a molecular dance known as a reaction mechanism in which stronger bonds are made at the expense of weaker bonds. If you are interested in asking 'why' and not just 'how', then you need to understand physical chemistry. Physical Chemistry: How Chemistry Works takes a fresh approach to teaching in physical chemistry. This modern textbook is designed to excite and engage undergraduate chemistry students and prepare them for how they will employ physical chemistry in real life. The student-friendly approach and practical, contemporary examples facilitate an understanding of the physical chemical aspects of any system, allowing students of inorganic chemistry, organic chemistry, analytical chemistry and biochemistry to be fluent in the essentials of physical chemistry in order to understand synthesis, intermolecular interactions and materials properties. For students who are deeply interested in the subject of physical chemistry, the textbook facilitates further study by connecting them to the frontiers of research. Provides students with the physical and mathematical machinery to understand the physical chemical aspects of any system. Integrates regular examples drawn from the literature, from contemporary issues and research, to engage students with relevant and illustrative details. Important topics are introduced and returned to in later chapters: key concepts are reinforced and discussed in more depth as students acquire more tools. Chapters begin with a preview of important concepts and conclude with a summary of important equations. Each chapter includes worked examples and exercises: discussion questions, simple equation manipulation questions, and problem-solving exercises. Accompanied by supplementary online material: worked examples for students and a solutions manual for instructors. Fifteen supporting videos from the author presenting such topics as Entropy & Direction of Change; Rate Laws; Sequestration; Electrochemistry; etc. Written by an experienced instructor, researcher and author in physical chemistry, with a voice and perspective that is pedagogical and engaging.
Kinetics and Dynamics of Elementary Gas Reactions surveys the state of modern knowledge on elementary gas reactions to understand natural phenomena in terms of molecular behavior. Part 1 of this book describes the theoretical and conceptual background of elementary gas-phase reactions, emphasizing the assumptions and limitations of each theoretical approach, as well as its strengths. In Part 2, selected experimental results are considered to demonstrate the scope of present day techniques and illustrate the application of the theoretical ideas introduced in Part 1. This publication is intended primarily for working kineticists and chemists, but is also beneficial to graduate students.
Molecular Driving Forces, Second Edition E-book is an introductory statistical thermodynamics text that describes the principles and forces that drive chemical and biological processes. It demonstrates how the complex behaviors of molecules can result from a few simple physical processes, and how simple models provide surprisingly accurate insights into the workings of the molecular world. Widely adopted in its First Edition, Molecular Driving Forces is regarded by teachers and students as an accessible textbook that illuminates underlying principles and concepts. The Second Edition includes two brand new chapters: (1) "Microscopic Dynamics" introduces single molecule experiments; and (2) "Molecular Machines" considers how nanoscale machines and engines work. "The Logic of Thermodynamics" has been expanded to its own chapter and now covers heat, work, processes, pathways, and cycles. New practical applications, examples, and end-of-chapter questions are integrated throughout the revised and updated text, exploring topics in biology, environmental and energy science, and nanotechnology. Written in a clear and reader-friendly style, the book provides an excellent introduction to the subject for novices while remaining a valuable resource for experts.
Elementary Chemical Reactor Analysis focuses on the processes, reactions, methodologies, and approaches involved in chemical reactor analysis, including stoichiometry, adiabatic reactors, external mass transfer, and thermochemistry. The publication first takes a look at stoichiometry and thermochemistry and chemical equilibrium. Topics include heat of formation and reaction, measurement of quantity and its change by reaction, concentration changes with a single reaction, rate of generation of heat by reaction, and equilibrium of simultaneous and heterogeneous reactions. The manuscript then offers information on reaction rates and the progress of reaction in time. Discussions focus on systems of first order reactions, concurrent reactions of low order, general irreversible reaction, variation of reaction rate with extent and temperature, and heterogeneous reaction rate expressions. The book examines the interaction of chemical and physical rate processes, continuous flow stirred tank reactor, and adiabatic reactors. Concerns include multistage adiabatic reactors, adiabatic stirred tank, stability and control of the steady state, mixing in the reactor, effective reaction rate expressions, and external mass transfer. The publication is a dependable reference for readers interested in chemical reactor analysis.