Download Free Elementary Euclidean Geometry Book in PDF and EPUB Free Download. You can read online Elementary Euclidean Geometry and write the review.

This book, first published in 2004, is an example based and self contained introduction to Euclidean geometry with numerous examples and exercises.
Plane geometry is developed from its basic objects and their properties and then moves to conics and basic solids, including the Platonic solids and a proof of Euler's polytope formula. Particular care is taken to explain symmetry groups, including the description of ornaments and the classification of isometries.
This classic text explores the geometry of the triangle and the circle, concentrating on extensions of Euclidean theory, and examining in detail many relatively recent theorems. 1929 edition.
This textbook provides an introduction to Euclidean geometry. While developing geometry for its own sake, the book also emphasizes the links between geometry and other branches of pure and applied mathematics.
This small book, translated into English for the first time, has long been a unique place to find classical results from geometry, such as Pythagoras' theorem, the nine-point circle, Morley's triangle, and many other subjects. In addition, this book contains recent, geometric theorems which have been obtained over the past years. There are 27 independent chapters on a wide range of topics in elementary plane Euclidean geometry, at a level just beyond what is usually taught in a good high school or college geometry course. The selection of topics is intelligent, varied, and stimulating, and the author provides many thought-provoking ideas.
This book offers a unique opportunity to understand the essence of one of the great thinkers of western civilization. A guided reading of Euclid's Elements leads to a critical discussion and rigorous modern treatment of Euclid's geometry and its more recent descendants, with complete proofs. Topics include the introduction of coordinates, the theory of area, history of the parallel postulate, the various non-Euclidean geometries, and the regular and semi-regular polyhedra.
Students can rely on Moise's clear and thorough presentation of basic geometry theorems. The author assumes that students have no previous knowledge of the subject and presents the basics of geometry from the ground up. This comprehensive approach gives instructors flexibility in teaching. For example, an advanced class may progress rapidly through Chapters 1-7 and devote most of its time to the material presented in Chapters 8, 10, 14, 19, and 20. Similarly, a less advanced class may go carefully through Chapters 1-7, and omit some of the more difficult chapters, such as 20 and 24.
There are many technical and popular accounts, both in Russian and in other languages, of the non-Euclidean geometry of Lobachevsky and Bolyai, a few of which are listed in the Bibliography. This geometry, also called hyperbolic geometry, is part of the required subject matter of many mathematics departments in universities and teachers' colleges-a reflec tion of the view that familiarity with the elements of hyperbolic geometry is a useful part of the background of future high school teachers. Much attention is paid to hyperbolic geometry by school mathematics clubs. Some mathematicians and educators concerned with reform of the high school curriculum believe that the required part of the curriculum should include elements of hyperbolic geometry, and that the optional part of the curriculum should include a topic related to hyperbolic geometry. I The broad interest in hyperbolic geometry is not surprising. This interest has little to do with mathematical and scientific applications of hyperbolic geometry, since the applications (for instance, in the theory of automorphic functions) are rather specialized, and are likely to be encountered by very few of the many students who conscientiously study (and then present to examiners) the definition of parallels in hyperbolic geometry and the special features of configurations of lines in the hyperbolic plane. The principal reason for the interest in hyperbolic geometry is the important fact of "non-uniqueness" of geometry; of the existence of many geometric systems.
This introduction to Euclidean geometry emphasizes transformations, particularly isometries and similarities. Suitable for undergraduate courses, it includes numerous examples, many with detailed answers. 1972 edition.
This textbook is a self-contained presentation of Euclidean Geometry, a subject that has been a core part of school curriculum for centuries. The discussion is rigorous, axiom-based, written in a traditional manner, true to the Euclidean spirit. Transformations in the Euclidean plane are included as part of the axiomatics and as a tool for solving construction problems. The textbook can be used for teaching a high school or an introductory level college course. It can be especially recommended for schools with enriched mathematical programs and for homeschoolers looking for a rigorous traditional discussion of geometry. The text is supplied with over 1200 questions and problems, ranging from simple to challenging. The solutions sections of the book contain about 200 answers and hints to solutions and over 100 detailed solutions involving proofs and constructions. More solutions and some supplements for teachers are available in the Instructor's Manual, which is issued as a separate book. Book Reviews: 'In terms of presentation, this text is more rigorous than any existing high school textbook that I know of. It is based on a system of axioms that describe incidence, postulate a notion of congruence of line segments, and assume the existence of enough rigid motions ("free mobility")... My gut reaction to the book is, wouldn't it be wonderful if American high school students could be exposed to this serious mathematical treatment of elementary geometry, instead of all the junk that is presented to them in existing textbooks. This book makes no concession to the TV-generation of students who want (or is it the publishers who want it for them?) pretty pictures, side bars, puzzles, games, historical references, cartoons, and all those colored images that clutter the pages of a typical modern textbook, while the mathematical content is diluted more and more with each successive edition.' Professor Robin Hartshorne, University of California at Berkeley. 'The textbook "Euclidean Geometry" by Mark Solomonovich fills a big gap in the plethora of mathematical textbooks - it provides an exposition of classical geometry with emphasis on logic and rigorous proofs... I would be delighted to see this textbook used in Canadian schools in the framework of an improved geometry curriculum. Until this day comes, I highly recommend "Euclidean Geometry" by Mark Solomonovich to be used in Mathematics Enrichment Programs across Canada and the USA.' Professor Yuly Billig, Carlton University.