Download Free Elementary Decision Theory Book in PDF and EPUB Free Download. You can read online Elementary Decision Theory and write the review.

This well-respected introduction to statistics and statistical theory covers data processing, probability and random variables, utility and descriptive statistics, computation of Bayes strategies, models, testing hypotheses, and much more. 1959 edition.
A comprehensive and accessible introduction to all aspects of decision theory, now with new and updated discussions and over 140 exercises.
"The text is very clearly written [with] many illustrative examples and exercises [and] should be considered by those instructors who would like to introduce a more modern (and a more logical) approach in a basic course in statistics." —Journal of the American Statistical Association This volume is a well-known, well-respected introduction to a lively area of statistics. Professors Chernoff and Moses bring years of professional expertise as classroom teachers to this straightforward approach to statistical problems. And happily, for beginning students, they have by-passed involved computational reasonings which would only confuse the mathematical novice. Developed from nine years of teaching statistics at Stanford, the book furnishes a simple and clear-cut method of exhibiting the fundamental aspects of a statistical problem. Beginners will find this book a motivating introduction to important mathematical notions such as set, function and convexity. Examples and exercises throughout introduce new topics and ideas. The first seven chapters are recommended for beginning courses in the basic ideas of statistics and require only a knowledge of high school math. These sections include material on data processing, probability and random variables, utility and descriptive statistics, uncertainty due to ignorance of the state of nature, computing Bayes strategies and an introduction to classical statistics. The last three chapters review mathematical models and summarize terminology and methods of testing hypotheses. Tables and appendixes provide information on notation, shortcut computational formulas, axioms of probability, properties of expectations, likelihood ratio test, game theory, and utility functions. Authoritative, yet elementary in its approach to statistics and statistical theory, this work is also concise, well-indexed and abundantly equipped with exercise material. Ideal for a beginning course, this modestly priced edition will be especially valuable to those interested in the principles of statistics and scientific method.
Evaluating statistical procedures through decision and game theory, as first proposed by Neyman and Pearson and extended by Wald, is the goal of this problem-oriented text in mathematical statistics. First-year graduate students in statistics and other students with a background in statistical theory and advanced calculus will find a rigorous, thorough presentation of statistical decision theory treated as a special case of game theory. The work of Borel, von Neumann, and Morgenstern in game theory, of prime importance to decision theory, is covered in its relevant aspects: reduction of games to normal forms, the minimax theorem, and the utility theorem. With this introduction, Blackwell and Professor Girshick look at: Values and Optimal Strategies in Games; General Structure of Statistical Games; Utility and Principles of Choice; Classes of Optimal Strategies; Fixed Sample-Size Games with Finite Ω and with Finite A; Sufficient Statistics and the Invariance Principle; Sequential Games; Bayes and Minimax Sequential Procedures; Estimation; and Comparison of Experiments. A few topics not directly applicable to statistics, such as perfect information theory, are also discussed. Prerequisites for full understanding of the procedures in this book include knowledge of elementary analysis, and some familiarity with matrices, determinants, and linear dependence. For purposes of formal development, only discrete distributions are used, though continuous distributions are employed as illustrations. The number and variety of problems presented will be welcomed by all students, computer experts, and others using statistics and game theory. This comprehensive and sophisticated introduction remains one of the strongest and most useful approaches to a field which today touches areas as diverse as gambling and particle physics.
In this new edition the author has added substantial material on Bayesian analysis, including lengthy new sections on such important topics as empirical and hierarchical Bayes analysis, Bayesian calculation, Bayesian communication, and group decision making. With these changes, the book can be used as a self-contained introduction to Bayesian analysis. In addition, much of the decision-theoretic portion of the text was updated, including new sections covering such modern topics as minimax multivariate (Stein) estimation.
Games and Decision Making, Second Edition, is a unique blend of decision theory and game theory. From classical optimization to modern game theory, authors Charalambos D. Aliprantis and Subir K. Chakrabarti show the importance of mathematical knowledge in understanding and analyzing issues in decision making. Through an imaginative selection of topics, Aliprantis and Chakrabarti treat decision and game theory as part of one body of knowledge. They move from problems involving the individual decision-maker to progressively more complex problems such as sequential rationality, auctions, and bargaining. By building each chapter on material presented earlier, the authors offer a self-contained and comprehensive treatment of these topics. Successfully class-tested in an advanced undergraduate course at the Krannert School of Management and in a graduate course in economics at Indiana University, Games and Decision Making, Second Edition, is an essential text for advanced undergraduates and graduate students of decision theory and game theory. The book is accessible to students who have a good basic understanding of elementary calculus and probability theory.
For advanced graduate students, this book is a one-stop shop that presents the main ideas of decision theory in an organized, balanced, and mathematically rigorous manner, while observing statistical relevance. All of the major topics are introduced at an elementary level, then developed incrementally to higher levels. The book is self-contained as it provides full proofs, worked-out examples, and problems. The authors present a rigorous account of the concepts and a broad treatment of the major results of classical finite sample size decision theory and modern asymptotic decision theory. With its broad coverage of decision theory, this book fills the gap between standard graduate texts in mathematical statistics and advanced monographs on modern asymptotic theory.
Explores how decision-makers can manage uncertainty that varies in both kind and severity by extending and supplementing Bayesian decision theory.
Decision theory is generally taught in one of two very different ways. When of opti taught by theoretical statisticians, it tends to be presented as a set of mathematical techniques mality principles, together with a collection of various statistical procedures. When useful in establishing the optimality taught by applied decision theorists, it is usually a course in Bayesian analysis, showing how this one decision principle can be applied in various practical situations. The original goal I had in writing this book was to find some middle ground. I wanted a book which discussed the more theoretical ideas and techniques of decision theory, but in a manner that was constantly oriented towards solving statistical problems. In particular, it seemed crucial to include a discussion of when and why the various decision prin ciples should be used, and indeed why decision theory is needed at all. This original goal seemed indicated by my philosophical position at the time, which can best be described as basically neutral. I felt that no one approach to decision theory (or statistics) was clearly superior to the others, and so planned a rather low key and impartial presentation of the competing ideas. In the course of writing the book, however, I turned into a rabid Bayesian. There was no single cause for this conversion; just a gradual realization that things seemed to ultimately make sense only when looked at from the Bayesian viewpoint.