Download Free Elementare Und Analytische Zahlentheorie Tagungsband Book in PDF and EPUB Free Download. You can read online Elementare Und Analytische Zahlentheorie Tagungsband and write the review.

Der vorliegende Band gibt Beitrage wieder, die auf Vortragen der Mainzer Tagung uber Elementare und Analytische Zahlentheorie (24.-28. Mai 2004) basieren, und daruber hinaus einige grosse Ubersichtsartikel zur Abschatzung von Fourier-Koeffizienten von Siegel'schen Spitzenformen, zu neueren Entwicklungen in der Theorie der Gitterpunkte, zum Goldbach-Problem und zur ABC-Vermutung fur Polynome (und "dessins d'enfants"). Die aktuellen Forschungsbeitrage befassen sich mit den verschiedensten Themenbereichen aus der analytischen Zahlentheorie, z.B. zum Waring-Problem, zu Verteilungsfragen fur arithmetische Funktionen, zu Kreisteilungspolynomen, und zur Anwendung von Abschatzungen von Exponentialsummen. Der Band soll auf einigen Teilgebieten der analytischen Zahlentheorie den gegenwartigen Stand der Forschung aufzeigen, und er kann Forschern in der Zahlentheorie Anregungen fur weitere wissenschaftliche Arbeit geben.
This book collects more than thirty contributions in memory of Wolfgang Schwarz, most of which were presented at the seventh International Conference on Elementary and Analytic Number Theory (ELAZ), held July 2014 in Hildesheim, Germany. Ranging from the theory of arithmetical functions to diophantine problems, to analytic aspects of zeta-functions, the various research and survey articles cover the broad interests of the well-known number theorist and cherished colleague Wolfgang Schwarz (1934-2013), who contributed over one hundred articles on number theory, its history and related fields. Readers interested in elementary or analytic number theory and related fields will certainly find many fascinating topical results among the contributions from both respected mathematicians and up-and-coming young researchers. In addition, some biographical articles highlight the life and mathematical works of Wolfgang Schwarz.
This volume contains seventeen of the best papers delivered at the SIGMAP Workshop 2014, representing the most recent advances in the field of symmetries of discrete objects and structures, with a particular emphasis on connections between maps, Riemann surfaces and dessins d’enfant.Providing the global community of researchers in the field with the opportunity to gather, converse and present their newest findings and advances, the Symmetries In Graphs, Maps, and Polytopes Workshop 2014 was the fifth in a series of workshops. The initial workshop, organized by Steve Wilson in Flagstaff, Arizona, in 1998, was followed in 2002 and 2006 by two meetings held in Aveiro, Portugal, organized by Antonio Breda d’Azevedo, and a fourth workshop held in Oaxaca, Mexico, organized by Isabel Hubard in 2010.This book should appeal to both specialists and those seeking a broad overview of what is happening in the area of symmetries of discrete objects and structures.iv>
Multiple Dirichlet series are Dirichlet series in several complex variables. A multiple Dirichlet series is said to be perfect if it satisfies a finite group of functional equations and has meromorphic continuation everywhere. The earliest examples came from Mellin transforms of metaplectic Eisenstein series and have been intensively studied over the last twenty years. More recently, many other examples have been discovered and it appears that all the classical theorems on moments of $L$-functions as well as the conjectures (such as those predicted by random matrix theory) can now be obtained via the theory of multiple Dirichlet series. Furthermore, new results, not obtainable by other methods, are just coming to light. This volume offers an account of some of the major research to date and the opportunities for the future. It includes an exposition of the main results in the theory of multiple Dirichlet series, and papers on moments of zeta- and $L$-functions, on new examples of multiple Dirichlet
A comprehensive account of Hardy's Z-function, one of the most important functions of analytic number theory.
This volume provides an introduction to dessins d'enfants and embeddings of bipartite graphs in compact Riemann surfaces. The first part of the book presents basic material, guiding the reader through the current field of research. A key point of the second part is the interplay between the automorphism groups of dessins and their Riemann surfaces, and the action of the absolute Galois group on dessins and their algebraic curves. It concludes by showing the links between the theory of dessins and other areas of arithmetic and geometry, such as the abc conjecture, complex multiplication and Beauville surfaces. Dessins d'Enfants on Riemann Surfaces will appeal to graduate students and all mathematicians interested in maps, hypermaps, Riemann surfaces, geometric group actions, and arithmetic.
What is the "most uniform" way of distributing n points in the unit square? How big is the "irregularity" necessarily present in any such distribution? This book is an accessible and lively introduction to the area of geometric discrepancy theory, with numerous exercises and illustrations. In separate, more specialized parts, it also provides a comprehensive guide to recent research.
The arithmetic Riemann-Roch Theorem has been shown recently by Bismut-Gillet-Soul. The proof mixes algebra, arithmetic, and analysis. The purpose of this book is to give a concise introduction to the necessary techniques, and to present a simplified and extended version of the proof. It should enable mathematicians with a background in arithmetic algebraic geometry to understand some basic techniques in the rapidly evolving field of Arakelov-theory.
There are several physico-chemical processes that determine the behavior of multiphase fluid systems – e.g., the fluid dynamics in the different phases and the dynamics of the interface(s), mass transport between the fluids, adsorption effects at the interface, and transport of surfactants on the interface – and result in heterogeneous interface properties. In general, these processes are strongly coupled and local properties of the interface play a crucial role. A thorough understanding of the behavior of such complex flow problems must be based on physically sound mathematical models, which especially account for the local processes at the interface. This book presents recent findings on the rigorous derivation and mathematical analysis of such models and on the development of numerical methods for direct numerical simulations. Validation results are based on specifically designed experiments using high-resolution experimental techniques. A special feature of this book is its focus on an interdisciplinary research approach combining Applied Analysis, Numerical Mathematics, Interface Physics and Chemistry, as well as relevant research areas in the Engineering Sciences. The contributions originated from the joint interdisciplinary research projects in the DFG Priority Programme SPP 1506 “Transport Processes at Fluidic Interfaces.”