Download Free Elegant Chaos Algebraically Simple Chaotic Flows Book in PDF and EPUB Free Download. You can read online Elegant Chaos Algebraically Simple Chaotic Flows and write the review.

This heavily illustrated book collects in one source most of the mathematically simple systems of differential equations whose solutions are chaotic. It includes the historically important systems of van der Pol, Duffing, Ueda, Lorenz, Rössler, and many others, but it goes on to show that there are many other systems that are simpler and more elegant. Many of these systems have been only recently discovered and are not widely known. Most cases include plots of the attractor and calculations of the spectra of Lyapunov exponents. Some important cases include graphs showing the route to chaos. The book includes many cases not previously published as well as examples of simple electronic circuits that exhibit chaos.No existing book thus far focuses on mathematically elegant chaotic systems. This book should therefore be of interest to chaos researchers looking for simple systems to use in their studies, to instructors who want examples to teach and motivate students, and to students doing independent study.
This book presents a collection of new articles written by world-leading experts and active researchers to present their recent finding and progress in the new area of chaotic systems and dynamics, regarding emerging subjects of unconventional chaotic systems and their complex dynamics.It guide readers directly to the research front of the new scientific studies. This book is unique of its kind in the current literature, presenting broad scientific research topics including multistability and hidden attractors in unconventional chaotic systems, such as chaotic systems without equilibria, with only stable equilibria, with a curve or a surface of equilibria. The book describes many novel phenomena observed from chaotic systems, such as non-Shilnikov type chaos, coexistence of different types of attractors, and spontaneous symmetry breaking in chaotic systems. The book presents state-of-the-art scientific research progress in the field with both theoretical advances and potential applications. This book is suitable for all researchers and professionals in the areas of nonlinear dynamics and complex systems, including research professionals, physicists, applied mathematicians, computer scientists and, in particular, graduate students in related fields.
Fractals are intricate geometrical forms that contain miniature copies of themselves on ever smaller scales. This colorful book describes methods for producing an endless variety of fractal art using a computer program that searches through millions of equations looking for those few that can produce images having aesthetic appeal. Over a hundred examples of such images are included with a link to the software that produced these images, and can also produce many more similar fractals. The underlying mathematics of the process is also explained in detail.Other books by the author that could be of interest to the reader are Elegant Chaos: Algebraically Simple Chaotic Flows (J C Sprott, 2010) and Elegant Circuits: Simple Chaotic Oscillators (J C Sprott and W J Thio, 2020).
The book reports on the latest advances in and applications of chaos theory and intelligent control. Written by eminent scientists and active researchers and using a clear, matter-of-fact style, it covers advanced theories, methods, and applications in a variety of research areas, and explains key concepts in modeling, analysis, and control of chaotic and hyperchaotic systems. Topics include fractional chaotic systems, chaos control, chaos synchronization, memristors, jerk circuits, chaotic systems with hidden attractors, mechanical and biological chaos, and circuit realization of chaotic systems. The book further covers fuzzy logic controllers, evolutionary algorithms, swarm intelligence, and petri nets among other topics. Not only does it provide the readers with chaos fundamentals and intelligent control-based algorithms; it also discusses key applications of chaos as well as multidisciplinary solutions developed via intelligent control. The book is a timely and comprehensive reference guide for graduate students, researchers, and practitioners in the areas of chaos theory and intelligent control.
Famous mathematical constants include the ratio of circular circumference to diameter, π = 3.14 ..., and the natural logarithm base, e = 2.718 .... Students and professionals can often name a few others, but there are many more buried in the literature and awaiting discovery. How do such constants arise, and why are they important? Here the author renews the search he began in his book Mathematical Constants, adding another 133 essays that broaden the landscape. Topics include the minimality of soap film surfaces, prime numbers, elliptic curves and modular forms, Poisson–Voronoi tessellations, random triangles, Brownian motion, uncertainty inequalities, Prandtl–Blasius flow (from fluid dynamics), Lyapunov exponents, knots and tangles, continued fractions, Galton–Watson trees, electrical capacitance (from potential theory), Zermelo's navigation problem, and the optimal control of a pendulum. Unsolved problems appear virtually everywhere as well. This volume continues an outstanding scholarly attempt to bring together all significant mathematical constants in one place.
A recent development is the discovery that simple systems of equations can have chaotic solutions in which small changes in initial conditions have a large effect on the outcome, rendering the corresponding experiments effectively irreproducible and unpredictable. An earlier book in this sequence, Elegant Chaos: Algebraically Simple Chaotic Flows provided several hundred examples of such systems, nearly all of which are purely mathematical without any obvious connection with actual physical processes and with very limited discussion and analysis.In this book, we focus on a much smaller subset of such models, chosen because they simulate some common or important physical phenomenon, usually involving the motion of a limited number of point-like particles, and we discuss these models in much greater detail. As with the earlier book, the chosen models are the mathematically simplest formulations that exhibit the phenomena of interest, and thus they are what we consider 'elegant.'Elegant models, stripped of unnecessary detail while maximizing clarity, beauty, and simplicity, occupy common ground bordering both real-world modeling and aesthetic mathematical analyses. A computational search led one of us (JCS) to the same set of differential equations previously used by the other (WGH) to connect the classical dynamics of Newton and Hamilton to macroscopic thermodynamics. This joint book displays and explores dozens of such relatively simple models meeting the criteria of elegance, taste, and beauty in structure, style, and consequence.This book should be of interest to students and researchers who enjoy simulating and studying complex particle motions with unusual dynamical behaviors. The book assumes only an elementary knowledge of calculus. The systems are initial-value iterated maps and ordinary differential equations but they must be solved numerically. Thus for readers a formal differential equations course is not at all necessary, of little value and limited use.
The book is devoted to recent developments in the theory of fractional calculus and its applications. Particular attention is paid to the applicability of this currently popular research field in various branches of pure and applied mathematics. In particular, the book focuses on the more recent results in mathematical physics, engineering applications, theoretical and applied physics as quantum mechanics, signal analysis, and in those relevant research fields where nonlinear dynamics occurs and several tools of nonlinear analysis are required. Dynamical processes and dynamical systems of fractional order attract researchers from many areas of sciences and technologies, ranging from mathematics and physics to computer science.
This book reports on the latest advances and applications of chaotic systems. It consists of 25 contributed chapters by experts who are specialized in the various topics addressed in this book. The chapters cover a broad range of topics of chaotic systems such as chaos, hyperchaos, jerk systems, hyperjerk systems, conservative and dissipative systems, circulant chaotic systems, multi-scroll chaotic systems, finance chaotic system, highly chaotic systems, chaos control, chaos synchronization, circuit realization and applications of chaos theory in secure communications, mobile robot, memristors, cellular neural networks, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in chaos theory. This book will serve as a reference book for graduate students and researchers with a basic knowledge of chaos theory and control systems. The resulting design procedures on the chaotic systems are emphasized using MATLAB software.
This book presents detailed descriptions of chaos for continuous-time systems. It is the first-ever book to consider chaos as an input for differential and hybrid equations. Chaotic sets and chaotic functions are used as inputs for systems with attractors: equilibrium points, cycles and tori. The findings strongly suggest that chaos theory can proceed from the theory of differential equations to a higher level than previously thought. The approach selected is conducive to the in-depth analysis of different types of chaos. The appearance of deterministic chaos in neural networks, economics and mechanical systems is discussed theoretically and supported by simulations. As such, the book offers a valuable resource for mathematicians, physicists, engineers and economists studying nonlinear chaotic dynamics.