Download Free Electronics For Radiation Detection Book in PDF and EPUB Free Download. You can read online Electronics For Radiation Detection and write the review.

There is a growing need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Assessing the billion-dollar market for detection equipment in the context of medical imaging using ionizing radiation, Electronics for Radiation Detection presents valuable information that will help integrated circuit (IC) designers and other electronics professionals take full advantage of the tremendous developments and opportunities associated with this burgeoning field. Assembling contributions from industrial and academic experts, this book— Addresses the state of the art in the design of semiconductor detectors, integrated circuits, and other electronics used in radiation detection Analyzes the main effects of radiation in semiconductor devices and circuits, paying special attention to degradation observed in MOS devices and circuits when they are irradiated Explains how circuits are built to deal with radiation, focusing on practical information about how they are being used, rather than mathematical details Radiation detection is critical in space applications, nuclear physics, semiconductor processing, and medical imaging, as well as security, drug development, and modern silicon processing techniques. The authors discuss new opportunities in these fields and address emerging detector technologies, circuit design techniques, new materials, and innovative system approaches. Aimed at postgraduate researchers and practicing engineers, this book is a must for those serious about improving their understanding of electronics used in radiation detection. The information presented here can help you make optimal use of electronic detection equipment and stimulate further interest in its development, use, and benefits.
Radiation Detection: Concepts, Methods, and Devices provides a modern overview of radiation detection devices and radiation measurement methods. The book topics have been selected on the basis of the authors’ many years of experience designing radiation detectors and teaching radiation detection and measurement in a classroom environment. This book is designed to give the reader more than a glimpse at radiation detection devices and a few packaged equations. Rather it seeks to provide an understanding that allows the reader to choose the appropriate detection technology for a particular application, to design detectors, and to competently perform radiation measurements. The authors describe assumptions used to derive frequently encountered equations used in radiation detection and measurement, thereby providing insight when and when not to apply the many approaches used in different aspects of radiation detection. Detailed in many of the chapters are specific aspects of radiation detectors, including comprehensive reviews of the historical development and current state of each topic. Such a review necessarily entails citations to many of the important discoveries, providing a resource to find quickly additional and more detailed information. This book generally has five main themes: Physics and Electrostatics needed to Design Radiation Detectors Properties and Design of Common Radiation Detectors Description and Modeling of the Different Types of Radiation Detectors Radiation Measurements and Subsequent Analysis Introductory Electronics Used for Radiation Detectors Topics covered include atomic and nuclear physics, radiation interactions, sources of radiation, and background radiation. Detector operation is addressed with chapters on radiation counting statistics, radiation source and detector effects, electrostatics for signal generation, solid-state and semiconductor physics, background radiations, and radiation counting and spectroscopy. Detectors for gamma-rays, charged-particles, and neutrons are detailed in chapters on gas-filled, scintillator, semiconductor, thermoluminescence and optically stimulated luminescence, photographic film, and a variety of other detection devices.
Analog Electronics for Radiation Detection showcases the latest advances in readout electronics for particle, or radiation, detectors. Featuring chapters written by international experts in their respective fields, this authoritative text: Defines the main design parameters of front-end circuitry developed in microelectronics technologies Explains the basis for the use of complementary metal–oxide semiconductor (CMOS) image sensors for the detection of charged particles and other non-consumer applications Delivers an in-depth review of analog-to-digital converters (ADCs), evaluating the pros and cons of ADCs integrated at the pixel, column, and per-chip levels Describes incremental sigma–delta ADCs, time-to-digital converter (TDC) architectures, and digital pulse-processing techniques complementary to analog processing Examines the fundamental parameters and front-end types associated with silicon photomultipliers used for single visible-light photon detection Discusses pixel sensors with per-pixel TDCs, channel density challenges, and emerging 3D technologies interconnecting detectors and electronics Thus, Analog Electronics for Radiation Detection provides a single source for state-of-the-art information on analog electronics for the readout of radiation detectors.
This book addresses the fundamental principles of interaction between radiation and matter, the principles of working and the operation of particle detectors based on silicon solid state devices. It covers a broad scope with respect to the fields of application of radiation detectors based on silicon solid state devices from low to high energy physics experiments including in outer space and in the medical environment. This book covers state-of-the-art detection techniques in the use of radiation detectors based on silicon solid state devices and their readout electronics, including the latest developments on pixelated silicon radiation detector and their application. The content and coverage of the book benefit from the extensive experience of the two authors who have made significant contributions as researchers as well as in teaching physics students in various universities.
Starting from basic principles, this book describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. The author, whose own contributions to these developments have been significant, explains the working principles of semiconductor radiation detectors in an intuitive way. Broad coverage is also given to electronic signal readout and to the subject of radiation damage.
Semiconductor Radiation Detection Systems addresses the state-of-the-art in the design of semiconductor detectors and integrated circuit design, in the context of medical imaging using ionizing radiation. It addresses exciting new opportunities in X-ray detection, Computer Tomography (CT), bone dosimetry, and nuclear medicine (PET, SPECT). In addition to medical imaging, the book explores other applications of semiconductor radiation detection systems in security applications such as luggage scanning, dirty bomb detection, and border control. Features a chapter written by well-known Gamma-Ray Imaging authority Tadayuki Takahashi Assembled by a combination of top industrial experts and academic professors, this book is more than just a product manual. It is practical enough to provide a solid explanation of presented technologies, incorporating material that offers an optimal balance of scientific and academic theory. With less of a focus on math and physical details, the author concentrates more on exploring exactly how technologies are being used. With its combined coverage of new materials and innovative new system approaches, as well as a succinct overview of recent developments, this book is an invaluable tool for any engineer, professional, or student working in electronics or an associated field.
CMOS: Front-End Electronics for Radiation Sensors offers a comprehensive introduction to integrated front-end electronics for radiation detectors, focusing on devices that capture individual particles or photons and are used in nuclear and high energy physics, space instrumentation, medical physics, homeland security, and related fields. Emphasizing practical design and implementation, this book: Covers the fundamental principles of signal processing for radiation detectors Discusses the relevant analog building blocks used in the front-end electronics Employs systematically weak and moderate inversion regimes in circuit analysis Makes complex topics such as noise and circuit-weighting functions more accessible Includes numerical examples where appropriate CMOS: Front-End Electronics for Radiation Sensors provides specialized knowledge previously obtained only through the study of multiple technical and scientific papers. It is an ideal text for students of physics and electronics engineering, as well as a useful reference for experienced practitioners.
The advances in semiconductor detectors, scintillators, photodetectors such as silicon photomultipliers (SiPM), and readout electronics have experienced tremendous growth in recent years in terms of basic technologies and a variety of applications. The second edition of Radiation Detection Systems presents variety of radiation detection systems, giving readers a broad view of the state-of-the-art in the design of detectors, front-end electronics, and systems offering optimized choices of the detection tools for a particular application. The new edition has been divided into two volumes. This volume on Medical Imaging, Industrial Testing, and Security Applications presents specific applications of the detection systems in medical imaging, industrial testing, and security applications. These newely developed technologies play a vital role in the detection, diagnosis, and treatment of major human diseases. Featuring contributions from leading experts and pioneers in their respective fields, this book: Describes new advances in development of detection systems based on CdZnTe (CZT) and CdTe detectors utilizing a direct conversion of radiation to electric signals Reports a recent progress in technologies and performance of SiPM used for reading the light from scintillators Explores exciting new application opportunities created by development of the cutting-edge detection technologies in X-ray spectroscopy, computed tomography (CT), bone dosimetry, and nuclear medicine (PET, SPECT) Considers the future use of photon-counting detectors in clinical CT scanners providing K-edge imaging to reduce the amount of contrast agents and ultimately offering both an anatomical and a functional information Describes, uses of radiation detection systems in security applications such as luggage scanning, dirty bomb detection, and border control With its combined coverage of new materials and innovative new system approaches, as well as a succinct overview of recent developments, this book is an invaluable tool for any engineer, professional, or student working in electronics or an associated field. Readers can refer to the other volume, Sensor Materials, Systems, Technology, and Characterization Measurements, which puts emphasis on sensor materials, detector structures, front electronics technology, and their designs and system optimization for different applications.
"The second edition of the book Radiation Detection Systems presents variety of radiation detection systems giving readers a broad view of the state-of-the-art in the design of detectors, front-end electronics and systems offering optimized choices of the detection tools for a particular application. The new edition has been divided into two volumes. This first volume, on Sensor Materials, Systems, Technology and Characterization Measurements puts emphasis on sensor materials, detector structures, front electronics technology and their designs as well as system optimization for different applications. Also, the book include characterization measurements of the developed detection systems."--
This new edition of the methods and instrumentation used in the detection of ionizing radiation has been revised and updated to reflect recent advances. It covers modern engineering practice, provides useful design information and contains an up-to-date review of the literature.