Download Free Electronic Structure And Electronic Transitions In Layered Materials Book in PDF and EPUB Free Download. You can read online Electronic Structure And Electronic Transitions In Layered Materials and write the review.

This new volume in the series Physics and Chemistry of Materials with Layered Structures satisfies the need for a comprehensive review of the progress made in the decade 1972-1982 in the field of the electronic properties of layer compounds. Some recent theoretical and experimental developments are highlighted by authori tative physicists active in current research. The previous books of this series covering similar topics are volumes 3 and 4. The present review is mainly intended to fulfill the gap up to 1982 and part of 1983. I am indebted to all the authors for their friendly co-operation and continuous effort in preparing the contributions in their own fields of competence. I am sure that both the expertise scientists and the beginners in the field of the electronic properties of layered materials will find this book a valuable tool for their research work. Warm thanks are due to Prof. E. Mooser, General Editor of the series, for his constant and authoritative advice. * * * This book has been conceived as a tribute to Prof. Franco Bassani to whom the Italian tradition in the field of layer compounds, as well as in other fields of solid state physics, owes much. The authors of this review have all benefited at some time of their professional life from close cooperation with him. Istituto di Struttura della Materia, VINCENZO GRASSO Universitd di Messina IX V Grasso (ed.). Electronic Structure and Electronic Transitions in Layered Materials. ix.
The structural phase transition is one of the most fundamental problems in solid state physics. Layered transition-metal dichalcogenides provide us with a most exciting area for the study of structural phase transitions that are associated with the charge density wave (CDW). A large variety of structural phase transitions, such as commensurate and incommensurate transitions, and the physical proper ties related to the formation of a CDW, have been an object of intense study made for many years by methods employing modem microscopic techniques. Rather recently, efforts have been devoted to the theoretical understanding of these experimental results. Thus, McMillan, for example, has developed an elegant phenomenological theory on the basis of the Landau free energy expansion. An extension of McMillan's theory has provided a successful understanding of the successive phase transitions observed in the IT- and 2H-compounds. In addition, a microscopic theory of lattice instability, lattice dynamics, and lattice distortion in the CDW state of the transition-metal dichalcogenides has been developed based on their electronic structures. As a result, the driving force of the CDW formation in the IT- and 2H-compounds has become clear. Furthermore, the effect of lattice fluctuations on the CDW transition and on the anomalous behavior of various physical properties has been made clear microscopically.
In the last two decades low-dimensional (low-d) physics has matured into a major branch of science. Quite generally we may define a system with restricted dimensionality d as an object that is infinite only in one or two spatial directions (d = 1 and 2). Such a definition comprises isolated single chains or layers, but also fibres and thin layers (films) of varying but finite thickness. Clearly, a multitude of physical phenomena, notably in solid state physics, fall into these categories. As examples, we may mention: • Magnetic chains or layers (thin-film technology). • Metallic films (homogeneous or heterogeneous, crystalline, amorphous or microcristalline, etc.). • I-d or 2-d conductors and superconductors. • Intercalated systems. • 2-d electron gases (electrons on helium, semiconductor interfaces). • Surface layer problems (2-d melting of monolayers of noble gases on a substrate, surface problems in general). • Superfluid films of ~He or 'He. • Polymer physics. • Organic and inorganic chain conductors, superionic conductors. • I-d or 2-d molecular crystals and liquid crystals. • I-d or 2-d ferro- and antiferro electrics.
The effect of reduced dimensionality, inherent at the crystallographic level, on the electronic properties of low dimensional materials can be dramatic, leading to structural and electronic instabilities—including supercond- tivity at high temperatures, charge density waves, and localisation—which continue to attract widespread interest. The layered transition metal dichalcogenides have engaged attention for many years, partly arising from the charge density wave effects which some show and the controlled way in which their properties can be modified by intercalation, while the development of epitaxial growth techniques has opened up promising areas based on dichalcogenide heterostructures and quantum wells. The discovery of high-temperature superconducting oxides, and the realisation that polymeric materials too can be exploited in a controlled way for various opto-electronic applications, have further sti- lated interest in the effects of structural dimensionality. It seems timely therefore to draw together some strands of recent research involving a range of disparate materials which share some common char- teristics of low dimensionality. This resulting volume is aimed at researchers with specialist interests in the particular materials discussed but who may also wish to examine the related phenomena observed in different systems, and at a more general solid state audience with broad interests in electronic properties and low dimensional phenomena. Space limitations have required us to be selective as regards particular materials, though we have managed to include those as dissimilar as polymeric semiconductors, superconducting oxides, bronzes and layered chalcogenides.
Recent studies on two-dimensional systems have led to new insights into the fascinating interplay between physical properties and dimensionality. Many of these ideas have emerged from work on electrons bound to the surface of a weakly polarizable substrate such as liquid helium or solid hydrogen. The research on this subject continues to be at the forefront of modern condensed matter physics because of its fundamental simplicity as well as its connection to technologically useful devices. This book is the first comprehensive overview of experimental and theoretical research in this exciting field. It is intended to provide a coherent introduction for graduate students and non-experts, while at the same time serving as a reference source for active researchers in the field. The chapters are written by individuals who made significant contributions and cover a variety of specialized topics. These include the origin of the surface states, tunneling and magneto-tunneling out of these states, the phase diagram, collective excitations, transport and magneto-transport.
The history of low dimensional conductors goes back to the prediction, more than forty years ago, by Peierls, of the instability of a one dimensional metallic chain, leading to what is known now as the charge density wave state. At the same time, Frohlich suggested that an "ideal" conductivity could be associated to the sliding of this charge density wave. Since then, several classes of compounds, including layered transition metal dichalcogenides, quasi one-dimensional organic conduc tors and transition metal tri- and tretrachalcogenides have been extensively studied. The molybdenum bronzes or oxides have been discovered or rediscovered as low dimensional conductors in this last decade. A considerable amount of work has now been performed on this subject and it was time to collect some review papers in a single book. Although this book is focused on the molybdenum bronzes and oxides, it has a far more general interest in the field of low dimensional conductors, since several of the molybdenum compounds provide, from our point of view, model systems. This is the case for the quasi one-dimensional blue bronze, especially due to the availability of good quality large single crystals. This book is intended for scientists belonging to the fields of solid state physics and chemistry as well as materials science. It should especially be useful to many graduate students involved in low dimensional oxides. It has been written by recognized specialists of low dimensional systems.
The phenomenon of superconductivity - after its discovery in metals such as mercury, lead, zinc, etc. by Kamerlingh-Onnes in 19]] - has attracted many scientists. Superconductivity was described in a very satisfactory manner by the model proposed by Bardeen, Cooper and Schrieffer, and by the extensions proposed by Abrikosov, Gorkov and Eliashberg. Relations were established between superconductivity and the fundamental properties of solids, resulting in a possible upper limit of the critical temperature at about 23 K. The breakthrough that revolutionized the field was made in 1986 by Bednorz and Muller with the discovery of high-temperature superconductivity in layered copper-oxide perovskites. Today the record in transition temperature is 133 K for a Hg based cuprate system. The last decade has not only seen a revolution in the size of the critical temperature, but also in the myriads of research groups that entered the field. In addition, high-temperature superconductivity became a real interdisciplinary topic and brought together physicists, chemists and materials scientists who started to investigate the new compounds with almost all the available experimental techniques and theoretical methods. As a consequence we have witnessed an avalanche of publications which has never occurred in any field of science so far and which makes it difficult for the individual to be thoroughly informed about the relevant results and trends. Neutron scattering has outstanding properties in the elucidation of the basic properties of high-temperature superconductors.
Recent advances in electrochemistry and materials science have opened the way to the evolution of entirely new types of energy storage systems: rechargeable lithium-ion batteries, electrochroms, hydrogen containers, etc., all of which have greatly improved electrical performance and other desirable characteristics. This book encompasses all the disciplines linked in the progress from fundamentals to applications, from description and modelling of different materials to technological use, from general diagnostics to methods related to technological control and operation of intercalation compounds. Designing devices with higher specific energy and power will require a more profound understanding of material properties and performance. This book covers the status of materials and advanced activities based on the development of new substances for energy storage.
This is a book on one of the most fascinating and controversial areas in contemporary science of carbon, chemistry, and materials science. It concisely summarizes the state of the art in topical and critical reviews written by professionals in this and related fields.