Download Free Electronic Communication In Heterometallated Porphyrin Oligomers Book in PDF and EPUB Free Download. You can read online Electronic Communication In Heterometallated Porphyrin Oligomers and write the review.

This book cuts across the divisions of organic, inorganic, and physical chemistry. It describes new methods for creating π-conjugated porphyrin oligomers with precisely defined sequences of zinc and copper metal cations, and how EPR spectroscopy was used to investigate the dipolar and exchange coupling between the paramagnetic copper(II) centres. Porphyrins are a group of heterocyclic macrocycle organic compounds that play an important role in our everyday life and can for example be found in blood where they form a red complex with iron (haem). Various metallic elements can be inserted into a porphyrin and changing the coordinated metal is an excellent way to influence the chemical and physical properties of these molecules. Focusing on 3 metals - zinc, magnesium and copper - the author established new methods for creating π-conjugated porphyrin oligomers and lastly presents the synthesis and investigation of two novel porphyrin nanoballs. Giving the template-directed strategy the author developed for constructing these molecules, this work could provide access to other related nano-cages.
This book covers a wide range of topics related to functional dyes, from synthesis and functionality to application. Making a survey of recent progress in functional dye chemistry, it provides an opportunity not only to understand the structure-property relationships of a variety of functional dyes but also to know how they are applied in practical use, from electronic devices to biochemical analyses. From classic dyes such as cyanines, squaraines, porphyrins, phthalocyanines, and others to the newest functional π-conjugation systems, various types of functional dyes are dealt with extensively in the book, focusing especially on the state of the art and the future. Readers will benefit greatly from the scientific context in which organic dyes and pigments are comprehensively explained on the basis of chemistry.
Scientists in such fields as mathematics, physics, chemistry, biochemistry, biology, and medicine are currently involved in investigations of porphyrins and their numerous analogues and derivatives. Porphyrins are being used as platforms for the study of theoretical principles, as catalysts, as drugs, as electronic devices, and as spectroscopic probes in biology and medicine. The need for an up-to-date and authoritative treatise on the porphyrin system has met with universal acclaim amongst scientists and investigators.
The Porphyrin Handbook, Volume 18: Multiporphyrins, Multiphthalocyanines and Arrays provides information pertinent to every aspect of the chemistry, synthesis, spectroscopy, and structure of phthalocyanines. This book examines the biology and medical implications of porphyrin systems. Organized into five chapters, this volume begins with an overview of the results obtained in the research concerning the properties and formation of a class of metal phthalocyanine derivatives containing of two macrocyclic units. This text then examines the luminescence and photophysical data of multiporphyrin systems in which the chromophore centers are held together by weak, medium, or strong bonding interactions. Other chapters consider the intensive electronic absorption and circular dichroism properties of chiral phthalocyanines. This book discusses as well the chemistry porphyrin and corrin systems. The final chapter deals with geoporphyrins or sedimentary porphyrins, which are the most abundant porphyrin derivatives on earth. This book is a valuable resource for research scientists, engineers, and clinicians.
The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors. Readership: research scientists at universities or in industry, graduate students Special offer For all customers who have a standing order to the print version of Structure and Bonding, we offer free access to the electronic volumes of the Series published in the current year via SpringerLink.
The aim of protein engineering is to improve or alter the properties of proteins in a rational, pre-determined way. This requires an understanding of the scope, structure, and function of proteins. The increasing importance of the subject is reflected in the widening range of courses coveringthe topic. This book provides a clear, up-to-date review of the subject and explains the principles and applications. Topics covered include analysis of mutant proteins, understanding of structure-activity relationships, and the application of protein engineering to industrial and medical problems.
The Porphyrin Handbook, Volume 14: Medical Aspects of Porphyrins provides information pertinent to every aspect of the chemistry, synthesis, spectroscopy, and structure of phthalocyanines. This book examines the biology and medical implications of porphyrin systems. Organized into 12 chapters, this volume begins with an overview of the underlying diagnostic features, mechanisms, and available treatments of erythropoietic disorders due to defective heme biosynthesis. This text then examines the physiopathology of acute intermittent porphyria, which is transmitted as autosomal dominant disorders with incomplete penetrance. Other chapters consider the main characteristics of congenital erythropoietic porphyria, which includes an increased synthesis, accumulation, ad excretion of porphyrins. This book discusses as well the biochemistry, pathophysiology, and clinical features of variegate porphyria in the light of several essential advances in the understanding, management, and diagnosis of variegate porphyria. The final chapter deals with the legal use of herbal and complementary medicines. This book is a valuable resource for research scientists, engineers, and clinicians.
Scientists in such fields as mathematics, physics, chemistry, biochemistry, biology, and medicine are currently involved in investigations of porphyrins and their numerous analogues and derivatives. Porphyrins are being used as platforms for the study of theoretical principles, as catalysts, as drugs, as electronic devices, and as spectroscopic probes in biology and medicine. The need for an up-to-date and authoritative treatise on the porphyrin system has met with universal acclaim amongst scientists and investigators.