Download Free Electron Tunneling In Chemistry Book in PDF and EPUB Free Download. You can read online Electron Tunneling In Chemistry and write the review.

Quantum tunnelling is one of the strangest phenomena in chemistry, where we see the wave nature of atoms acting in “impossible” ways. By letting molecules pass through the kinetic barrier instead of over it, this effect can lead to chemical reactions even close to the absolute zero, to atypical spectroscopic observations, to bizarre selectivity, or to colossal isotopic effects. Quantum mechanical tunnelling observations might be infrequent in chemistry, but it permeates through all its disciplines producing remarkable chemical outcomes. For that reason, the 21st century has seen a great increase in theoretical and experimental findings involving molecular tunnelling effects, as well as in novel techniques that permit their accurate predictions and analysis. Including experimental, computational and theoretical chapters, from the physical and organic to the biochemistry fields, from the applied to the academic arenas, this new book provides a broad and conceptual perspective on tunnelling reactions and how to study them. Quantum Tunnelling in Molecules is the obligatory stop for both the specialist and those new to this world.
In recent years, there has been an explosion in knowledge and research associated with the field of enzyme catalysis and H-tunneling. Rich in its breath and depth, this introduction to modern theories and methods of study is suitable for experienced researchers those new to the subject. Edited by two leading experts, and bringing together the foremost practitioners in the field, this up-to-date account of a rapidly developing field sits at the interface between biology, chemistry and physics. It covers computational, kinetic and structural analysis of tunnelling and the synergy in combining these methods (with a major focus on H-tunneling reactions in enzyme systems). The book starts with a brief overview of proton and electron transfer history by Nobel Laureate, Rudolph A. Marcus. The reader is then guided through chapters covering almost every aspect of reactions in enzyme catalysis ranging from descriptions of the relevant quantum theory and quantum/classical theoretical methodology to the description of experimental results. The theoretical interpretation of these large systems includes both quantum mechanical and statistical mechanical computations, as well as simple more approximate models. Most of the chapters focus on enzymatic catalysis of hydride, proton and H" transfer, an example of the latter being proton coupled electron transfer. There is also a chapter on electron transfer in proteins. This is timely since the theoretical framework developed fifty years ago for treating electron transfers has now been adapted to H-transfers and electron transfers in proteins. Accessible in style, this book is suitable for a wide audience but will be particularly useful to advanced level undergraduates, postgraduates and early postdoctoral workers.
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.
In Volume 30, an attempt is made to consider comprehensively both theoretical and experimental data that have been obtained to date on electron tunneling reactions involving chemical compounds of various classes, and to discuss the role played by these reactions in different areas of chemistry. The discussion of the above problem is preceded by a review of data on tunneling phenomena in nuclear physics, atomic physics, solid-state physics, as well as on the tunneling effects in chemistry that go beyond the framework of the main subject of this monograph. This review is included to acquaint the reader with the role of tunneling phenomena in physics and chemistry as a whole, to show how diversified the kingdom of tunneling phenomena is, and to see more distinctly the similarities and the differences between electron tunneling in chemical reactions and other tunnel phenomena.
This book is ideal for use in a one-semester introductory course in physical chemistry for students of life sciences. The author's aim is to emphasize the understanding of physical concepts rather than focus on precise mathematical development or on actual experimental details. Subsequently, only basic skills of differential and integral calculus are required for understanding the equations. The end-of-chapter problems have both physiochemical and biological applications.
Fundamentals of Quantum Mechanics, Third Edition is a clear and detailed introduction to quantum mechanics and its applications in chemistry and physics. All required math is clearly explained, including intermediate steps in derivations, and concise review of the math is included in the text at appropriate points. Most of the elementary quantum mechanical models—including particles in boxes, rigid rotor, harmonic oscillator, barrier penetration, hydrogen atom—are clearly and completely presented. Applications of these models to selected "real world topics are also included.This new edition includes many new topics such as band theory and heat capacity of solids, spectroscopy of molecules and complexes (including applications to ligand field theory), and small molecules of astrophysical interest. - Accessible style and colorful illustrations make the content appropriate for professional researchers and students alike - Presents results of quantum mechanical calculations that can be performed with readily available software - Provides exceptionally clear discussions of spin-orbit coupling and group theory, and comprehensive coverage of barrier penetration (quantum mechanical tunneling) that touches upon hot topics, such as superconductivity and scanning tunneling microscopy - Problems given at the end of each chapter help students to master concepts
A quantum origin of life? -- Quantum mechanics and emergence -- Quantum coherence and the search for the first replicator -- Ultrafast quantum dynamics in photosynthesis -- Modelling quantum decoherence in biomolecules -- Molecular evolution -- Memory depends on the cytoskeleton, but is it quantum? -- Quantum metabolism and allometric scaling relations in biology -- Spectroscopy of the genetic code -- Towards understanding the origin of genetic languages -- Can arbitrary quantum systems undergo self-replication? -- A semi-quantum version of the game of life -- Evolutionary stability in quantum games -- Quantum transmemetic intelligence -- Dreams versus reality : plenary debate session on quantum computing -- Plenary debate: quantum effects in biology : trivial or not? -- Nontrivial quantum effects in biology : a skeptical physicists' view -- That's life! : the geometry of p electron clouds.
Electrified interfaces span from metaVsemiconductor and metaVelectrolyte interfaces to disperse systems and biological membranes, and are notably important in so many physical, chemical and biological systems that their study has been tackled by researchers with different scientific backgrounds using different methodological approaches. The various electrified interfaces have several common features. The equilibrium distribution of positive and negative ions in an electrolytic solution is governed by the same Poisson-Boltzmann equation independent of whether the solution comes into contact with a metal, a colloidal particle or a biomembrane, and the same is true for the equilibrium distribution of free electrons and holes of a semiconductor in contact with a different conducting phase. Evaluation of electric potential differences across biomembranes is based on the same identity of electrochemical potentials which holds for a glass electrode and which yields the Nernst equation when applied to a metal/solution interface. The theory of thermally activated electron tunneling, which was developed by Marcus, Levich, Dogonadze and others to account for electron transfer across metaVelectrolyte interfaces, is also applied to light induced charge separation and proton translocation reactions across intercellular membranes. From an experimental viewpoint, the same electrochemical and in situ spectroscopic techniques can equally well be employed for the study of apparently quite different electrified interfaces.