Download Free Electron Transfer In Biology And The Solid State Book in PDF and EPUB Free Download. You can read online Electron Transfer In Biology And The Solid State and write the review.

Identifies unifying concepts applicable to electron transfer between metal centers in both solid-state materials and biological systems. The 23 contributions cover such topics as: peptides and proteins; inorganic complexes; and theoretical and experimental aspects of solid state transfer. For materials scientists, solid state scientists, and biochemists. Annotation copyrighted by Book News, Inc., Portland, OR
Various aspects of electron and proton transfer in chemistry and biology are described in this volume. The joint presentation was chosen for two reasons. Rapid electron and proton transfer govern cellular energetics in both the most primitive and higher organisms with photosynthetic and heterotrophic lifestyles. Further, biology has become the area where the various disciplines of science, which were previously diversified, are once again converging. The book begins with a survey of physicochemical principles of electron transfer in the gas and solid phase, with thermodynamic and photochemical driving force. Inner and outer sphere mechanisms and the coupling of electron transfer to nuclear rearrangements are reviewed. These principles are applied to construct artificial photosynthesis, leading to biological electron transfer involving proteins with transition metal and/or organic redox centres. The tuning of the free energy profile on the reaction trajectory through the protein by single amino acids or by the larger ensemble that determines the electrostatic properties of the reaction path is one major issue.Another one is the transformation of one-electron to paired-electron steps with protection against hazardous radical intermediates. The diversity of electron transport systems is represented in various chapters with emphasis on photosynthesis, respiration and nitrogenases. The book will be of interest to scientists in chemistry, physics and the life sciences.
This book covers the various processes of charge transfer in physics, chemistry and biology and shows the similarities and differences between them. It focuses on the physical mechanisms of the elementary processes to demonstrate their common physical nature.
Electron Transfer in Chemistry and Biology An Introduction to the Theory Alexander M. Kuznetsov Russian Academy of Sciences, Moscow, Russia Jens Ulstrup Technical University of Denmark, Lyngby, Denmark Electron transfer is perhaps the single most important physical event in chemical, electrochemical, photochemical, biochemical, and biophysical processes. The focus and ubiquity of electron transfer is intriguing and exciting but a coherent and comprehensive approach to this topic is at the same time a challenge. Electron Transfer in Chemistry and Biology provides a thorough and didactic approach to the theoretical basis of electron transfer phenomena. Not only does it offer a full introduction to this area and a discussion of its historical development, it also gives detailed explanations of difficult issues, for example, long-range electron transfers, stochastic and dynamic processes, and biological features. A wide variety of readers will find this volume of great interest, ranging from final year undergraduate students, postgraduate students and university lecturers, to research staff in numerous fields including medical companies, electronics industry, catalysis research and development, chemical industry and some hospitals.
Electron Transfer Reactions deals with the mechanisms of electron transfer reactions between metal ions in solution, as well as the electron exchange between atoms or molecules in either the gaseous or solid state. The book is divided into three parts. Part 1 covers the electron transfer between atoms and molecules in the gas state. Part 2 tackles the reaction paths of oxidation states and binuclear intermediates, as well as the mechanisms of electron transfer. Part 3 discusses the theories and models of the electron transfer process; theories and experiments involving bridged electron transfer; optical electron transfer; and electron transfer in the solid state. The text is recommended for chemists who would like to know more about the principles and mechanisms behind electron transfer reactions.
This book presents the versatile and pivotal role of electron spin interactions in nature. It provides the background, methodologies and tools for basic areas related to spin interactions, such as spin chemistry and biology, electron transfer, light energy conversion, photochemistry, radical reactions, magneto-chemistry and magneto-biology. The book also includes an overview of designing advanced magnetic materials, optical and spintronic devices and photo catalysts. This monograph will be of interest to scientists and graduate students working in the areas related to spin interactions physics, biophysics, chemistry and chemical engineering.
From May 3-7,1997, the NATO Advanced Research Workshop on 'Biological Electron Transfer Chains' was organized in Tomar, Portugal. In the application for support the choice of the topic was justified as follows: "[Until recently efforts] have concentrated on the study of the structure and function of individual redox enzymes and proteins. Enough information is now available to make a start with the study of biological electron transfer (E1) at the next higher level of organization, that of the complete ET chain." The interest in the workshop was high: the majority of participants had registered before the workshop was formally announced, which illustrates the popularity of the topic within the biochemical and biophysical communities. The present volume contains a number of reports based on the lectures presented by the key speakers during the meeting. The workshop dealt with the following three themes: a) Electron transfer, which is the subject of Chapter 1. The analysis of ET at the molecular level is still fundamental for an understanding of how ET chains operate in vivo. After 40 years of research the contours of the subject are becoming clear now. b) Bacterial redox chains. This is the subject of Chapter 2. Its contents show how complicated these chains can be, often involving a number of gene clusters. Our understanding of the regulatory aspects and control mechanisms of these chains is only in its beginning.