Download Free Electron Energy Loss Spectroscopy And Surface Vibrations Book in PDF and EPUB Free Download. You can read online Electron Energy Loss Spectroscopy And Surface Vibrations and write the review.

Electron Energy Loss Spectroscopy and Surface Vibrations is devoted to electron energy loss spectroscopy as a probe of the crystal surface. Electrons with energy in the range of a few electron volts sample only a few atomic layers. As they approach or exit from the crystal, they interact with the vibrational modes of the crystal surface, or possibly with other elementary excitations localized there. The energy spectrum of electrons back-reflected from the surface is thus a rich source of information on its dynamics. The book opens with a detailed analysis of the physics that controls the opera ...
Electron Energy Loss Spectroscopy and Surface Vibrations is devoted to electron energy loss spectroscopy as a probe of the crystal surface. Electrons with energy in the range of a few electron volts sample only a few atomic layers. As they approach or exit from the crystal, they interact with the vibrational modes of the crystal surface, or possibly with other elementary excitations localized there. The energy spectrum of electrons back-reflected from the surface is thus a rich source of information on its dynamics. The book opens with a detailed analysis of the physics that controls the operation of the monochromator, which is the core of the experimental apparatus. Separate chapters follow on the interaction of electrons with vibrational modes of the surface region and with other elementary excitations in the vicinity; the lattice dynamics of clean and adsorbate-covered surfaces, with emphasis on those features of particular relevance to surface vibrational spectroscopy; and selected applications vibration spectroscopy in surface physics and chemistry.
Revised and expanded second edition of the standard work on new techniques for studying solid surfaces.
This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. It is designed as a handbook for the researcher as well as a study-text for graduate students. Written explanations are supported by 350 graphs and illustrations.
Practical Guide to Surface Science and Spectroscopy provides a practical introduction to surface science as well as describes the basic analytical techniques that researchers use to understand what occurs at the surfaces of materials and at their interfaces. These techniques include auger electron spectroscopy, photoelectron spectroscopy, inelastic scattering of electrons and ions, low energy electron diffraction, scanning probe microscopy, and interfacial segregation. Understanding the behavior of materials at their surfaces is essential for materials scientists and engineers as they design and fabricate microelectronics and semiconductor devices. The book gives over 100 examples, discussion questions and problems with varying levels of difficulty. Included with this book is a CD-ROM, which not only contains the same information, but also provides many elements of animation and interaction that are not easily emulated on paper. In diverse subject matters ranging from the operation of ion pumps, computer-assisted data acquisition to tapping mode atomic force microscopy, the interactive component is especially helpful in conveying difficult concepts and retention of important information. The succinct style and organization of this practical guide is ideal for anyone who wants to get up to speed on a given topic in surface spectroscopy or phenomenon within a reasonable amount of time. - Both theory and practice are emphasized - Logical organization allows one to get up to speed on any given topic quickly - Numerous examples, questions for discussion and practice problems are included - The CD includes animation and interactive elements that help to convey difficult concepts
This book concisely illustrates the techniques of major surface analysis and their applications to a few key examples. Surfaces play crucial roles in various interfacial processes, and their electronic/geometric structures rule the physical/chemical properties. In the last several decades, various techniques for surface analysis have been developed in conjunction with advances in optics, electronics, and quantum beams. This book provides a useful resource for a wide range of scientists and engineers from students to professionals in understanding the main points of each technique, such as principles, capabilities and requirements, at a glance. It is a contemporary encyclopedia for selecting the appropriate method depending on the reader's purpose.
This handbook delivers an up-to-date, comprehensive and authoritative coverage of the broad field of surface science, encompassing a range of important materials such metals, semiconductors, insulators, ultrathin films and supported nanoobjects. Over 100 experts from all branches of experiment and theory review in 39 chapters all major aspects of solid-state surfaces, from basic principles to applications, including the latest, ground-breaking research results. Beginning with the fundamental background of kinetics and thermodynamics at surfaces, the handbook leads the reader through the basics of crystallographic structures and electronic properties, to the advanced topics at the forefront of current research. These include but are not limited to novel applications in nanoelectronics, nanomechanical devices, plasmonics, carbon films, catalysis, and biology. The handbook is an ideal reference guide and instructional aid for a wide range of physicists, chemists, materials scientists and engineers active throughout academic and industrial research.
The observation of the vibrational spectra of adsorbed species provides one of the most incisive methods for und erst an ding chemical and physical phenomena on surfaces. At the present time, many approaches may be applied to studies of molecular vibrations on surfaces. Some of these are used on high-area solids of technological importance (e.g., heterogeneous catalysts) while others are applied to single-crystal substrates to gain better understanding under conditions of controlled surface structure. This book has attempted to bring together in one place a discussion of the major methods used to measure vibrational spectra of surface species. The emphasis is on basic concepts and experimental methods rather than a current survey of the extensive literature in this field. Two introductory chapters describe the basic theoretical aspects of vibrational spectroscopy on surfaces, dealing with normal modes and excitation mechanisms in vibrational spectroscopy. The remaining seven chapters deal with various methods employed to observe surface vibra tions. These are arranged in an order that first treats the use of various methods on surfaces that are not of the single-crystal type. It is in this area that the field first got started in the late 1940s with pioneering work by Terenin and others in the Soviet Union, and by Eisehens and others in the United States in the 1950s. The last four chapters deal with relatively recent methods that permit vibrational studies to be made on single crystal substrates.