Download Free Electron Cyclotron Resonance Ion Sources Book in PDF and EPUB Free Download. You can read online Electron Cyclotron Resonance Ion Sources and write the review.

Acknowledged as the "founding father" of and world renowned expert on electron cyclotron resonance sources Richard Geller has produced a unique book devoted to the physics and technicalities of electron cyclotron resonance sources. Electron Cyclotron Resonance Ion Sources and ECR Plasmas provides a primer on electron cyclotron phenomena in ion sour
Acknowledged as the "founding father" of and world renowned expert on electron cyclotron resonance sources Richard Geller has produced a unique book devoted to the physics and technicalities of electron cyclotron resonance sources. Electron Cyclotron Resonance Ion Sources and ECR Plasmas provides a primer on electron cyclotron phenomena in ion sources as well as being a reference to the field of ion source developments. Coverage includes elements of plasma physics, specific electron cyclotron resonance physics, and the relevant technology directed at both scientists and engineers.
The first edition of this title has become a well-known reference book on ion sources. The field is evolving constantly and rapidly, calling for a new, up-to-date version of the book. In the second edition of this significant title, editor Ian Brown, himself an authority in the field, compiles yet again articles written by renowned experts covering various aspects of ion source physics and technology. The book contains full chapters on the plasma physics of ion sources, ion beam formation, beam transport, computer modeling, and treats many different specific kinds of ion sources in sufficient detail to serve as a valuable reference text.
The Handbook of Ion Sources delivers the data needed for daily work with ion sources. It also gives information for the selection of a suitable ion source and ion production method for a specific application. The Handbook concentrates on practical aspects and introduces the principle function of ion sources. The basic plasma parameters are defined and discussed. The working principles of various ion sources are explained, and examples of each type of ion source are presented with their operational data. Tables of ion current for various elements and charge states summarize the performance of different ion sources. The problems related to the production of ions of non-gaseous elements are detailed, and data on useful materials for evaporation and ion source construction are summarized. Additional chapters are dedicated to extraction and beam formation, ion beam diagnosis, ion source electronics, and computer codes for extraction, acceleration, and beam transport. Emittance and brilliance are described and space charge effects and neutralization discussed. Various methods for the measurement of current, profile, emittance, and time structure are presented and compared. Intensity limits for these methods are provided for different ion energies. Typical problems related to the operation of ion source plasmas are discussed and practical examples of circuits are given. The influence of high voltage on ion source electronics and possibilities for circuit protection are covered. The generation of microwaves and various microwave equipment are described and special problems related to microwave operation are summarized. The Handbook of Ion Sources is a valuable reference on the subject, of benefit to practitioners and graduate students interested in accelerators, ion implantation, and ion beam techniques.
Proceedings of a NATO ARW held in Vimeiro, Portugal, May 11-15, 1992
Divided into three main parts, the book guides the reader to an understanding of the basic concepts in this fascinating field of research. Part 1 introduces you to the fundamental concepts of simulation. It examines one-dimensional electrostatic codes and electromagnetic codes, and describes the numerical methods and analysis. Part 2 explores the mathematics and physics behind the algorithms used in Part 1. In Part 3, the authors address some of the more complicated simulations in two and three dimensions. The book introduces projects to encourage practical work Readers can download plasma modeling and simulation software — the ES1 program — with implementations for PCs and Unix systems along with the original FORTRAN source code. Now available in paperback, Plasma Physics via Computer Simulation is an ideal complement to plasma physics courses and for self-study.
This book describes the design, physics, and performance of high density plasma sources which have been extensively explored in low pressure plasma processing, such as plasma etching and planarization, plasma enhanced chemical vapor deposition of thin films, sputtered deposition of metals and dielectrics, epitaxial growth of silicon and GaAs, and many other applications. This is a comprehensive survey and a detailed description of most advanced high density plasma sources used in plasma processing.
With substantial contributions from experienced industrial scientists and engineers, this work will have real application towards improving process efficiency and improvement in the trillion-dollar global petroleum industry. It presents an overview of the emerging field of petroleomics, which endeavors to understand the fundamental components of crude oil. Petroleomics promises to revolutionize petroleum science in much the same way that genomics transformed the study of medicine not long ago. Asphaltenes are a particular focus, with many chapters devoted to the analysis of their structure and properties.
TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at Livermore, together with injection of ion current to near field-reversal conditions in the 2XIIß device. Invention of the tandem mirror has given magnetic confinement a new and exciting dimension. New ideas have emerged, such as the compact torus, surface-field devices, and the EßT mirror-torus hybrid, and some old ideas, such as the stellarator and the reversed-field pinch, have been revived. Radiofrequency heat ing has become a new star with its promise of dc current drive. Perhaps most importantly, great progress has been made in the understanding of the MHD behavior of toroidal plasmas: tearing modes, magnetic Vll Vlll islands, and disruptions.