Download Free Electromechanical Sensors And Actuators Book in PDF and EPUB Free Download. You can read online Electromechanical Sensors And Actuators and write the review.

Unlike other treatments of sensors or actuators, this book approaches the devices from the point of view of the fundamental coupling mechanism between the electrical and mechanical behaviour. The principles of operation of the solenoid are the same in both cases, and this book thus treats them together. It begins with a discussion of systems analysis as a tool for modelling transducers, before turning to a detailed discussion of transduction mechanisms. The whole is rounded off by an input/output analysis of transducers.
Unlike other treatments of sensors or actuators, this book approaches the devices from the point of view of the fundamental coupling mechanism between the electrical and mechanical behaviour. The principles of operation of the solenoid are the same in both cases, and this book thus treats them together. It begins with a discussion of systems analysis as a tool for modelling transducers, before turning to a detailed discussion of transduction mechanisms. The whole is rounded off by an input/output analysis of transducers.
This book presents recent results on fault diagnosis and condition monitoring of airborne electromechanical actuators, illustrating both algorithmic and hardware design solutions to enhance the reliability of onboard more electric aircraft. The book begins with an introduction to the current trends in the development of electrically powered actuation systems for aerospace applications. Practical examples are proposed to help present approaches to reliability, availability, maintainability and safety analysis of airborne equipment. The terminology and main strategies for fault diagnosis and condition monitoring are then reviewed. The core of the book focuses on the presentation of relevant case studies of fault diagnosis and monitoring design for airborne electromechanical actuators, using different techniques. The last part of the book is devoted to a summary of lessons learned and practical suggestions for the design of fault diagnosis solutions of complex airborne systems. The book is written with the idea of providing practical guidelines on the development of fault diagnosis and monitoring algorithms for airborne electromechanical actuators. It will be of interest to practitioners in aerospace, mechanical, electronic, reliability and systems engineering, as well as researchers and postgraduates interested in dynamical systems, automatic control and safety-critical systems. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
From large-scale industrial systems to components in consumer applications, mechatronics has woven itself into the very fabric of modern technology. Among the most important elements of mechatronic systems are electromagnetic sensors and electromechanical actuators. Cultivated over years of industrial and research experience, Sensors and Actuators in Mechatronics: Design and Applications builds a practical understanding of the features and functions of various electromagnetic and electromechanical devices necessary to meet specific industrial requirements. This work focuses on various components that receive less attention in the available literature, such as magnetic sensors, linear and latching solenoid actuators, stepper motors, rotary actuators, and other special magnetic devices including magnetic valves and heart pumps. Each chapter follows a consistent format, working from theory to design, applications, and numerical problems and solutions. Although the crux of the coverage is design and application, the author also discusses optimization and testing, introduces magnetic materials, and shares his enlightened perspective on the social and business aspects of developing world-class technologies. Examples from mainly the automotive industry illustrate the wide variety of mechatronic devices presented. Providing a complete picture from conception to completion, Sensors and Actuators in Mechatronics: Design and Applications places critical tools in the hands of any researcher or engineer seeking to develop innovative mechatronic systems.
This practical text features computer-aided engineering methods for the design and application of magnetic actuators and sensors, using the latest software tools. John Brauer highlights the use of the electromagnetic finite element software package Maxwell? SV and introduces readers to applications using SPICE, MATLAB?, and Simplorer?. A free download of Maxwell? SV is available at the Ansoft site, and the software files for the examples are available at ftp://ftp.wiley.com/public/sci_tech_med/magnetic_actuators. The text is divided into four parts: * Part One, Magnetics, offers an introduction to magnetic actuators and sensors as well as basic electromagnetics, followed by an examination of the reluctance method, the finite element method, magnetic force, and other magnetic performance parameters * Part Two, Actuators, explores DC actuators, AC actuators, and magnetic actuator transient operation * Part Three, Sensors, details Hall effect and magnetoresistance as they apply to sensing position. Readers are introduced to many other types of magnetic sensors * Part Four, Systems, covers aspects of systems common to both magnetic actuators and sensors, including coil design and temperature calculations, electromagnetic compatibility, electromechanical finite elements, and electromechanical analysis using system models. The final chapter sets forth the advantages of electrohydraulic systems that incorporate magnetic actuators and/or sensors A major thrust of this book is teaching by example. In addition to solved examples provided by the author, problems at the end of each chapter help readers to confirm their understanding of new skills and techniques. References, provided in each chapter, help readers explore particular topics in greater depth. With its emphasis on problem solving and applications, this is an ideal textbook for electrical and mechanical engineers enrolled in upper-level undergraduate and graduate classes in electromechanical engineering.
Electromechanical systems consisting of electrical, mechanical and acoustic subsystems are of special importance in various technical fields, e.g. precision device engineering, sensor and actuator technology, electroacoustics and medical engineering. Based on a circuit-oriented representation, providing readers with a descriptive engineering design method for these systems is the goal of this textbook. It offers an easy and fast introduction to mechanical, acoustic, fluid, thermal and hydraulic problems through the application of circuit-oriented basic knowledge. The network description methodology, presented in detail, is extended to finite network elements and combined with the finite element method (FEM): the combination of the advantages of both description methods results in novel approaches, especially in the higher frequency range. The book offers numerous current examples of both the design of sensors and actuators and that of direct coupled sensor-actuator systems. The appendix provides more extensive fundamentals for signal description, as well as a compilation of important material characteristics. The textbook is suitable both for graduate students and for engineers working in the fields of electrical engineering, information technology, mechatronics, microtechnology, and mechanical and medical engineering.
Control systems are found in a wide variety of areas, including chemical processing, aerospace, manufacturing, and automotive engineering. Beyond the controller, sensors and actuators are the most important components of the control system, and students, regardless of their chosen engineering field, need to understand the fundamentals of how these
Annotation Engineers and researchers can turn to this reference time and time again when they need to overcome challenges in design, simulation, fabrication, and application of MEMS (microelectromechanical systems) sensors.
This significant and uniquely comprehensive five-volume reference is a valuable source for research workers, practitioners, computer scientists, students, and technologists. It covers all of the major topics within the subject and offers a comprehensive treatment of MEMS design, fabrication techniques, and manufacturing methods. It also includes current medical applications of MEMS technology and provides applications of MEMS to opto-electronic devices. It is clearly written, self-contained, and accessible, with helpful standard features including an introduction, summary, extensive figures and design examples with comprehensive reference lists.
The basic components of electromechanical actuators include geartrains, prime movers, bearings, shafts, sensors, cooling components, and fasteners. A common requirement that drives a typical actuator design process is providing the output torque and speed needed for the given actuator task in a minimum volume/weight geometry. Two important questions to be answered in this research relate to the scaling and configuration management of an electromechanical actuator design. The first question is: "Given an electromechanical actuator design, how can it be scaled to produce another design that meets a different set of requirements (e.g., torque, speed, weight, life)?" The second question is: "Given an electromechanical actuator design, how can a designer change the configuration to obtain another design that meets the same set of requirements in a different geometric package/shape?" The answers to these questions rely on the development of a science of design process for electromechanical actuators to replace the current design process, which is based primarily on designer experience and often requires multiple design iterations. The Robotics Research Group (RRG) is currently working on this science of design process, which includes parametric design rules that can be used to reveal how actuator design parameters affect its key performance indicators. To improve this science, this research develops a detailed parametric model of the primary actuator components for a standard actuator, summarizes the design rules available from this model, formally defines the concepts of scaling and configuration management, and lays out a step-by-step process to implement these concepts. The parametric model used in this research builds on the existing models of previous RRG researchers. The design rules are developed based on the fundamental modeling equations that govern the design of the actuator components. The concepts of scaling and configuration management are defined as two of the fundamental design operations that can be applied to an electromechanical actuator. A scaling and configuration management process, which requires the parametric model, is developed and applied to an existing set of baseline actuator designs. The result of this process is the creation of actuator designs of intermediate size between the sizes of existing actuators, which makes it suitable for populating an actuator family. To handle the size and complexity of the actuator parametric model, this research introduces the model reduction technique of monotonicity analysis and illustrates how it is well suited for the electromechanical actuator design problem. A future goal of the RRG is to create a software tool that will contain a complete actuator parametric model, component design rules (of this and future research), and scaling and configuration management options, which will allow users to design actuators with a minimum amount of time, cost, and knowledge