Download Free Electromagnetics And Optics Book in PDF and EPUB Free Download. You can read online Electromagnetics And Optics and write the review.

The book addresses the natural link between electromagnetics and optics. The electromagnetic origin of optical phenomena is sought through a dual approach to optics which is based on the wave equation and ray theory. A review of the underlying principles, as well as mechanisms of wave/ray interactions with matter are presented first. An examination of guided propagation of light through various dielectric waveguides follows. Aspects of resonant light propagation, such as Gaussian beams, resonators and lasers, are treated next. The basic theory of light processing by optical elements is presented in the fourth part which covers Fourier optics, the scalar theory of diffraction and holography. The book further refers to miscellaneous topics, such as optical radiation, remote sensing and nonlinear phenomena.
This engaging text offers an accessible and clear treatment of the fundamentals of electromagnetics and optics, a core part of the standard undergraduate physics curriculum. Starting with static electric and magnetic fields, the book works through electromagnetic oscillations and the formation and propagation of electromagnetic waves, before moving on to geometric and wave optics, optical instrumentation and some discussion of new technologies in optics. The text is written from the experimental physics point of view, giving numerous real life examples and applications of devices. This highly motivating presentation deepens the knowledge in a very accessible way, carefully interweaving theory and practical applications. Students are guided through the material with well-chosen examples and case studies, and helpful chapter summaries are provided together with numerous exercises and detailed solutions, all intended to motivate and develop a well-founded understanding of the subject matter.
The book addresses the natural link between electromagnetics and optics. The electromagnetic origin of optical phenomena is sought through a dual approach to optics which is based on the wave equation and ray theory. A review of the underlying principles, as well as mechanisms of wave/ray interactions with matter are presented first. An examination of guided propagation of light through various dielectric waveguides follows. Aspects of resonant light propagation, such as Gaussian beams, resonators and lasers, are treated next. The basic theory of light processing by optical elements is presented in the fourth part which covers Fourier optics, the scalar theory of diffraction and holography. The book further refers to miscellaneous topics, such as optical radiation, remote sensing and nonlinear phenomena.
Modern technology is rapidly developing and for this reason future engineers need to acquire advanced knowledge in science and technology, including electromagnetic phenomena. This book is a contemporary text of a one-semester course for junior electrical engineering students. It covers a broad spectrum of electromagnetic phenomena such as, surface waves, plasmas, photonic crystals, negative refraction as well as related materials including superconductors. In addition, the text brings together electromagnetism and optics as the majority of texts discuss electromagnetism disconnected from optics. In contrast, in this book both are discussed. Seven labs have been developed to accompany the material of the book.
Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Sixth Edition covers optical phenomenon that can be treated with Maxwell's phenomenological theory. The book is comprised of 14 chapters that discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals. The text covers the elements of the theories of interference, interferometers, and diffraction. The book tackles several behaviors of light, including its diffraction when exposed to ultrasonic waves. The selection will be most useful to researchers whose work involves understanding the behavior of light.
Complex-mediums electromagnetics (CME) describes the study of electromagnetic fields in materials with complicated response properties. This truly multidisciplinary field commands the attentions of scientists from physics and optics to electrical and electronic engineering, from chemistry to materials science, to applied mathematics, biophysics, and nanotechnology. This book is a collection of essays to explain complex mediums for optical and electromagnetic applications. All contributors were requested to write with two aims: first, to educate; second, to provide a state-of-the-art review of a particular subtopic. The vast scope of CME exemplified by the actual materials covered in the essays should provide a plethora of opportunities to the novice and the initiated alike.
A theoretical, self-contained study of periodic multilayers and how they can be effectively exploited in both traditional and modern applications.
This book is a rigorous but concise macroscopic description of the interaction between electromagnetic radiation and structures containing graphene sheets (two-dimensional structures). It presents canonical problems with translational invariant geometries, in which the solution of the original vectorial problem can be reduced to the treatment of two scalar problems, corresponding to two basic polarization modes. The book includes computational problems and makes use of the Python programming language to make numerical calculations accessible to any science student. Many figures within are accompanied by Python scripts.
Written by the leading experts in the field, this text provides systematic coverage of the theory, physics, functional designs, and engineering applications of advanced engineered electromagnetic surfaces. All the essential topics are included, from the fundamental theorems of surface electromagnetics, to analytical models, general sheet transmission conditions (GSTC), metasurface synthesis, and quasi-periodic analysis. A plethora of examples throughout illustrate the practical applications of surface electromagnetics, including gap waveguides, modulated metasurface antennas, transmit arrays, microwave imaging, cloaking, and orbital angular momentum (OAM ) beam generation, allowing readers to develop their own surface electromagnetics-based devices and systems. Enabling a fully comprehensive understanding of surface electromagnetics, this is an invaluable text for researchers, practising engineers and students working in electromagnetics antennas, metasurfaces and optics.
Transformation electromagnetics is a systematic design technique for optical and electromagnetic devices that enables novel wave-material interaction properties. The associated metamaterials technology for designing and realizing optical and electromagnetic devices can control the behavior of light and electromagnetic waves in ways that have not been conventionally possible. The technique is credited with numerous novel device designs, most notably the invisibility cloaks, perfect lenses and a host of other remarkable devices. Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications presents a comprehensive treatment of the rapidly growing area of transformation electromagnetics and related metamaterial technology with contributions on the subject provided by a collection of leading experts from around the world. On the theoretical side, the following questions will be addressed: “Where does transformation electromagnetics come from?,” “What are the general material properties for different classes of coordinate transformations?,” “What are the limitations and challenges of device realizations?,” and “What theoretical tools are available to make the coordinate transformation-based designs more amenable to fabrication using currently available techniques?” The comprehensive theoretical treatment will be complemented by device designs and/or realizations in various frequency regimes and applications including acoustic, radio frequency, terahertz, infrared, and the visible spectrum. The applications encompass invisibility cloaks, gradient-index lenses in the microwave and optical regimes, negative-index superlenses for sub-wavelength resolution focusing, flat lenses that produce highly collimated beams from an embedded antenna or optical source, beam concentrators, polarization rotators and splitters, perfect electromagnetic absorbers, and many others. This book will serve as the authoritative reference for students and researchers alike to the fast-evolving and exciting research area of transformation electromagnetics/optics, its application to the design of revolutionary new devices, and their associated metamaterial realizations.