Download Free Electromagnetic Scattering Using The Iterative Multiregion Technique Book in PDF and EPUB Free Download. You can read online Electromagnetic Scattering Using The Iterative Multiregion Technique and write the review.

In this work, an iterative approach using the finite difference frequency domain method is presented to solve the problem of scattering from large-scale electromagnetic structures. The idea of the proposed iterative approach is to divide one computational domain into smaller subregions and solve each subregion separately. Then the subregion solutions are combined iteratively to obtain a solution for the complete domain. As a result, a considerable reduction in the computation time and memory is achieved. This procedure is referred to as the iterative multiregion (IMR) technique. Different enhancement procedures are investigated and introduced toward the construction of this technique. These procedures are the following: 1) a hybrid technique combining the IMR technique and a method of moment technique is found to be efficient in producing accurate results with a remarkable computer memory saving; 2) the IMR technique is implemented on a parallel platform that led to a tremendous computational time saving; 3) together, the multigrid technique and the incomplete lower and upper preconditioner are used with the IMR technique to speed up the convergence rate of the final solution, which reduces the total computational time. Thus, the proposed iterative technique, in conjunction with the enhancement procedures, introduces a novel approach to solving large open-boundary electromagnetic problems including unconnected objects in an efficient and robust way. Contents: Basics of the FDFD Method / IMR Technique for Large-Scale Electromagnetic Scattering Problems: 3D Case / IMR Technique for Large-Scale Electromagnetic Scattering Problems: 2D Case / The IMR Algorithm Using a Hybrid FDFD and Method of Moments Technique / Parallelization of the Iterative Multiregion Technique / Combined Multigrid Technique and IMR Algorithm / Concluding Remarks / Appendices
Periodic structures are of great importance in electromagnetics due to their wide range of applications such as frequency selective surfaces (FSS), electromagnetic band gap (EBG) structures, periodic absorbers, meta-materials, and many others. The aim of this book is to develop efficient computational algorithms to analyze the scattering properties of various electromagnetic periodic structures using the finite-difference time-domain periodic boundary condition (FDTD/PBC) method. A new FDTD/PBC-based algorithm is introduced to analyze general skewed grid periodic structures while another algorithm is developed to analyze dispersive periodic structures. Moreover, the proposed algorithms are successfully integrated with the generalized scattering matrix (GSM) technique, identified as the hybrid FDTD-GSM algorithm, to efficiently analyze multilayer periodic structures. All the developed algorithms are easy to implement and are efficient in both computational time and memory usage. These algorithms are validated through several numerical test cases. The computational methods presented in this book will help scientists and engineers to investigate and design novel periodic structures and to explore other research frontiers in electromagnetics. Table of Contents: Introduction / FDTD Method and Periodic Boundary Conditions / Skewed Grid Periodic Structures / Dispersive Periodic Structures / Multilayered Periodic Structures / Conclusions
This book presents the application of the overlapping grids approach to solve chiral material problems using the FDFD method. Due to the two grids being used in the technique, we will name this method as Double-Grid Finite Difference Frequency-Domain (DG-FDFD) method. As a result of this new approach the electric and magnetic field components are defined at every node in the computation space. Thus, there is no need to perform averaging during the calculations as in the aforementioned FDFD technique [16]. We formulate general 3D frequency-domain numerical methods based on double-grid (DG-FDFD) approach for general bianisotropic materials. The validity of the derived formulations for different scattering problems has been shown by comparing the obtained results to exact and other solutions obtained using different numerical methods. Table of Contents: Introduction / Chiral Media / Basics of the Finite-Difference Frequency-Domain (FDFD) Method / The Double-Grid Finite-Difference Frequency-Domain (DG-FDFD) Method for Bianisotropic Medium / Scattering FromThree Dimensional Chiral Structures / ImprovingTime and Memory Efficiencies of FDFD Methods / Conclusions / Appendix A: Notations / Appendix B: Near to Far FieldTransformation
In this work, an iterative approach using the finite difference frequency domain method is presented to solve the problem of scattering from large-scale electromagnetic structures. The idea of the proposed iterative approach is to divide one computational domain into smaller subregions and solve each subregion separately. Then the subregion solutions are combined iteratively to obtain a solution for the complete domain. As a result, a considerable reduction in the computation time and memory is achieved. This procedure is referred to as the iterative multiregion (IMR) technique.
This book describes and illustrates the application of several asymptotic methods that have proved useful in the authors' research in electromagnetics and antennas. We first define asymptotic approximations and expansions and explain these concepts in detail. We then develop certain prerequisites from complex analysis such as power series, multivalued functions (including the concepts of branch points and branch cuts), and the all-important gamma function. Of particular importance is the idea of analytic continuation (of functions of a single complex variable); our discussions here include some recent, direct applications to antennas and computational electromagnetics. Then, specific methods are discussed. These include integration by parts and the Riemann-Lebesgue lemma, the use of contour integration in conjunction with other methods, techniques related to Laplace's method and Watson's lemma, the asymptotic behavior of certain Fourier sine and cosine transforms, and the Poisson summation formula (including its version for finite sums). Often underutilized in the literature are asymptotic techniques based on the Mellin transform; our treatment of this subject complements the techniques presented in our recent Synthesis Lecture on the exact (not asymptotic) evaluation of integrals.
In this book, a general frequency domain numerical method similar to the finite difference frequency domain (FDFD) technique is presented. The proposed method, called the multiresolution frequency domain (MRFD) technique, is based on orthogonal Battle-Lemarie and biorthogonal Cohen-Daubechies-Feauveau (CDF) wavelets. The objective of developing this new technique is to achieve a frequency domain scheme which exhibits improved computational efficiency figures compared to the traditional FDFD method: reduced memory and simulation time requirements while retaining numerical accuracy. The newly introduced MRFD scheme is successfully applied to the analysis of a number of electromagnetic problems, such as computation of resonance frequencies of one and three dimensional resonators, analysis of propagation characteristics of general guided wave structures, and electromagnetic scattering from two dimensional dielectric objects. The efficiency characteristics of MRFD techniques based on different wavelets are compared to each other and that of the FDFD method. Results indicate that the MRFD techniques provide substantial savings in terms of execution time and memory requirements, compared to the traditional FDFD method. Table of Contents: Introduction / Basics of the Finite Difference Method and Multiresolution Analysis / Formulation of the Multiresolution Frequency Domain Schemes / Application of MRFD Formulation to Closed Space Structures / Application of MRFD Formulation to Open Space Structures / A Multiresolution Frequency Domain Formulation for Inhomogeneous Media / Conclusion
Substrate integrated waveguide (SIW) is a new type of transmission line. It implements a waveguide on a piece of printed circuit board by emulating the side walls of the waveguide using two rows of metal posts. It inherits the merits both from the microstrip for compact size and easy integration, and from the waveguide for low radiation loss, and thus opens another door to design efficient microwave circuits and antennas at a low cost. This book presents a two-dimensional fullwave analysis method to investigate an SIW circuit composed of metal and dielectric posts. It combines the cylindrical eigenfunction expansion and the method of moments to avoid geometrical descritization of the posts. The method is presented step-by-step, with all the necessary formulations provided for a practitioner who wants to implement this method by himself. This book covers the SIW circuit printed on either homogeneous or inhomogeneous substrate, the microstrip-to-SIW transition and the speed-up technique for the simulation of symmetrical SIW circuits. Different types of SIW circuits are shown and simulated using the proposed method. In addition, several slot antennas and horn antennas fabricated using the SIW technology are also given. Table of Contents: Introduction / SIW Circuits Composed of Metallic Posts / SIW Circuits with Dielectric Posts / Even-Odd Mode Analysis of a Symmetrical Circuit / Microstrip to SIW Transition and Half Mode SIW / SIW Antennas
This comprehensive volume thoroughly covers wave propagation behaviors and computational techniques for electromagnetic waves in different complex media. The chapter authors describe powerful and sophisticated analytic and numerical methods to solve their specific electromagnetic problems for complex media and geometries as well. This book will be of interest to electromagnetics and microwave engineers, physicists and scientists.
In recent years, transmitarray antennas have attracted growing interest with many antenna researchers. Transmitarrays combines both optical and antenna array theory, leading to a low profile design with high gain, high radiation efficiency, and versatile radiation performance for many wireless communication systems. In this book, comprehensive analysis, new methodologies, and novel designs of transmitarray antennas are presented. Detailed analysis for the design of planar space-fed array antennas is presented. The basics of aperture field distribution and the analysis of the array elements are described. The radiation performances (directivity and gain) are discussed using array theory approach, and the impacts of element phase errors are demonstrated. The performance of transmitarray design using multilayer frequency selective surfaces (M-FSS) approach is carefully studied, and the transmission phase limit which are generally independent from the selection of a specific element shape is revealed. The maximum transmission phase range is determined based on the number of layers, substrate permittivity, and the separations between layers. In order to reduce the transmitarray design complexity and cost, three different methods have been investigated. As a result, one design is performed using quad-layer cross-slot elements with no dielectric material and another using triple-layer spiral dipole elements. Both designs were fabricated and tested at X-Band for deep space communications. Furthermore, the radiation pattern characteristics were studied under different feed polarization conditions and oblique angles of incident field from the feed. New design methodologies are proposed to improve the bandwidth of transmitarray antennas through the control of the transmission phase range of the elements. These design techniques are validated through the fabrication and testing of two quad-layer transmitarray antennas at Ku-band. A single-feed quad-beam transmitarray antenna with 50 degrees elevation separation between the beams is investigated, designed, fabricated, and tested at Ku-band. In summary, various challenges in the analysis and design of transmitarray antennas are addressed in this book. New methodologies to improve the bandwidth of transmitarray antennas have been demonstrated. Several prototypes have been fabricated and tested, demonstrating the desirable features and potential new applications of transmitarray antennas.
Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations -- the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers who want to gain a fundamental knowledge of the FDTD method. It can accompany an undergraduate or entry-level graduate course or be used for self-study. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to practical problems in engineering and science. Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics guides the reader through the foundational theory of the FDTD method starting with the one-dimensional transmission-line problem and then progressing to the solution of Maxwell's equations in three dimensions. It also provides step by step guides to modeling physical sources, lumped-circuit components, absorbing boundary conditions, perfectly matched layer absorbers, and sub-cell structures. Post processing methods such as network parameter extraction and far-field transformations are also detailed. Efficient implementations of the FDTD method in a high level language are also provided. Table of Contents: Introduction / 1D FDTD Modeling of the Transmission Line Equations / Yee Algorithm for Maxwell's Equations / Source Excitations / Absorbing Boundary Conditions / The Perfectly Matched Layer (PML) Absorbing Medium / Subcell Modeling / Post Processing