Download Free Electromagnetic Scattering And Material Characterization Book in PDF and EPUB Free Download. You can read online Electromagnetic Scattering And Material Characterization and write the review.

Based on the authorOCOs more-than 30 years of experience, this first-of-its-kind volume presents a comprehensive and systematic analysis of electromagnetic fields and their scattering by material objects. The book considers all three categories of scattering environments commonly used for material measurements OCo unbounded regions, waveguides, and cavity resonators. The book covers such essential topics as electromagnetic field propagation, radiation, and scattering, containing mathematically rigorous approaches for the computation of electromagnetic fields and the explanation of their behavior. Moreover, the book explore new measurement techniques for material characterization most of which have never been published before. This detailed reference is packed with over 400 equations.
This book discusses the most commonly used techniques for characterizing magnetic material properties and their applications. It provides a comprehensive and easily digestible collection and review of magnetic measurement techniques. It also examines the underlying operating principles and techniques of magnetic measurements, and presents current examples where such measurements and properties are relevant. Given the pervasive nature of magnetic materials in everyday life, this book is a vital resource for both professionals and students wishing to deepen their understanding of the subject.
This book is a practical engineering guide to microwave material measurements for both laboratory and manufacturing/field environments, including nondestructive inspection (NDI) and nondestructive evaluation (NDE). The book covers proven methods for characterizing materials at microwave frequencies, including both resonant and wide-bandwidth techniques, and gives you the necessary theory and equations for implementing these methods. You’ll understand how to invert dielectric and/or magnetic material properties from free space transmission and reflection, and how to measure traveling wave attenuation. You’ll also know how to measure dielectric and/or magnetic material properties from transmission line fixtures, and learn how to use computational electromagnetic modeling with a measurement fixture. The book shows you how to build and use microwave NDE equipment for radomes and/or structural dielectric materials. This is an excellent resource for Engineers/scientists conducting or analyzing RF/Microwave/MMW material measurements for applications in electromagnetic materials, as well as those who are developing or applying microwave non-destructive evaluation (NDE) methods to their manufacturing problems.
Most books on nondestructive evaluation (NDE) focus either on the theoretical background or on advanced applications. Bridging the gap between the two, Ultrasonic and Electromagnetic NDE for Structure and Material Characterization: Engineering and Biomedical Applications brings together the principles, equations, and applications of ultrasonic and
This book covers state-of-the-art techniques commonly used in modern materials characterization. Two important aspects of characterization, materials structures and chemical analysis, are included. Widely used techniques, such as metallography (light microscopy), X-ray diffraction, transmission and scanning electron microscopy, are described. In addition, the book introduces advanced techniques, including scanning probe microscopy. The second half of the book accordingly presents techniques such as X-ray energy dispersive spectroscopy (commonly equipped in the scanning electron microscope), fluorescence X-ray spectroscopy, and popular surface analysis techniques (XPS and SIMS). Finally, vibrational spectroscopy (FTIR and Raman) and thermal analysis are also covered.
Microwave Materials Characterization is an edited book discussing recent researches on basic and innovative measurement techniques for the characterization of materials at microwave frequencies, in terms of quantitative determination of their electromagnetic parameters, namely the complex permittivity and permeability. It is divided into two parts: Part 1, including original contributions on advanced techniques for the characterization of dielectric materials, and Part 2, devoted to the microwave characterization of biological tissues.
Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. - Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques - Reviews the determination of microstructural and mechanical properties - Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries - Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials
Characterization enables a microscopic understanding of the fundamental properties of materials (Science) to predict their macroscopic behaviour (Engineering). With this focus, Principles of Materials Characterization and Metrology presents a comprehensive discussion of the principles of materials characterization and metrology. Characterization techniques are introduced through elementary concepts of bonding, electronic structure of molecules and solids, and the arrangement of atoms in crystals. Then, the range of electrons, photons, ions, neutrons and scanning probes, used in characterization, including their generation and related beam-solid interactions that determine or limit their use, is presented. This is followed by ion-scattering methods, optics, optical diffraction, microscopy, and ellipsometry. Generalization of Fraunhofer diffraction to scattering by a three-dimensional arrangement of atoms in crystals leads to X-ray, electron, and neutron diffraction methods, both from surfaces and the bulk. Discussion of transmission and analytical electron microscopy, including recent developments, is followed by chapters on scanning electron microscopy and scanning probe microscopies. The book concludes with elaborate tables to provide a convenient and easily accessible way of summarizing the key points, features, and inter-relatedness of the different spectroscopy, diffraction, and imaging techniques presented throughout. Principles of Materials Characterization and Metrology uniquely combines a discussion of the physical principles and practical application of these characterization techniques to explain and illustrate the fundamental properties of a wide range of materials in a tool-based approach. Based on forty years of teaching and research, this book incorporates worked examples, to test the reader's knowledge with extensive questions and exercises.