Download Free Electromagnetic Devices For Motion Control And Signal Processing Book in PDF and EPUB Free Download. You can read online Electromagnetic Devices For Motion Control And Signal Processing and write the review.

This book is dedicated to electrical and mechanical engineers involved with the design of magnetic devices for motion con trol and other instrumentation that uses magnetic principles and technology. It can be of benefit to graduate and postgrad uate students to gain experience with electro-magnetic princi ples and also with different aspects of magnetic coupling mech anisms and magnetic circuitry analysis for the design of devices such as electrical servo motors, tachogenerators, encoders, gyro magnetic suspension systems, electro-magnetic strip lines, and other electro-magnetic instruments. The rapidly growing areas of production automation, robotics, precise micro-electronics, and pilot navigation place demands on motion control technology in terms of accuracy, reliability, cost effectiveness, and miniaturization. New ferromagnetic materials having quasi-linear and non-linear high-squareness characteris tics as well as high-energy permanent magnets, fine lithography, and high-t.emperature superconductivit.y (t.o be expected com mercially) motivate the implementation of new motion control components that exploit these new materials and technologies. This book presents classical miniature electrical machine de signs as well as several modifications in the geometry of mag netic couplings which lead to new motor and encoder design methodologies and other motion control devices such as new coil deposition patterns for incremental and absolute encoders, free spherical gyro suspension in a traveling magnetic field for navigation instrumentation, and magnetic strip lines in combi nation with resistive and capacitive media to generate a variety of low-noise LC filters and other signal processing devices.
This book is dedicated to electrical and mechanical engineers involved with the design of magnetic devices for motion con trol and other instrumentation that uses magnetic principles and technology. It can be of benefit to graduate and postgrad uate students to gain experience with electro-magnetic princi ples and also with different aspects of magnetic coupling mech anisms and magnetic circuitry analysis for the design of devices such as electrical servo motors, tachogenerators, encoders, gyro magnetic suspension systems, electro-magnetic strip lines, and other electro-magnetic instruments. The rapidly growing areas of production automation, robotics, precise micro-electronics, and pilot navigation place demands on motion control technology in terms of accuracy, reliability, cost effectiveness, and miniaturization. New ferromagnetic materials having quasi-linear and non-linear high-squareness characteris tics as well as high-energy permanent magnets, fine lithography, and high-t.emperature superconductivit.y (t.o be expected com mercially) motivate the implementation of new motion control components that exploit these new materials and technologies. This book presents classical miniature electrical machine de signs as well as several modifications in the geometry of mag netic couplings which lead to new motor and encoder design methodologies and other motion control devices such as new coil deposition patterns for incremental and absolute encoders, free spherical gyro suspension in a traveling magnetic field for navigation instrumentation, and magnetic strip lines in combi nation with resistive and capacitive media to generate a variety of low-noise LC filters and other signal processing devices.
Developing algorithms for multi-dimensional Fourier transforms, this book presents results that yield highly efficient code on a variety of vector and parallel computers. By emphasising the unified basis for the many approaches to both one-dimensional and multidimensional Fourier transforms, this book not only clarifies the fundamental similarities, but also shows how to exploit the differences in optimising implementations. It will thus be of great interest not only to applied mathematicians and computer scientists, but also to seismologists, high-energy physicists, crystallographers, and electrical engineers working on signal and image processing.
This graduate-level text provides a language for understanding, unifying, and implementing a wide variety of algorithms for digital signal processing - in particular, to provide rules and procedures that can simplify or even automate the task of writing code for the newest parallel and vector machines. It thus bridges the gap between digital signal processing algorithms and their implementation on a variety of computing platforms. The mathematical concept of tensor product is a recurring theme throughout the book, since these formulations highlight the data flow, which is especially important on supercomputers. Because of their importance in many applications, much of the discussion centres on algorithms related to the finite Fourier transform and to multiplicative FFT algorithms.
The updated third edition of the classic book that provides an introduction to electric machines and their emerging applications The thoroughly revised and updated third edition of Electromechanical Motion Devices contains an introduction to modern electromechanical devices and offers an understanding of the uses of electric machines in emerging applications such as in hybrid and electric vehicles. The authors—noted experts on the topic—put the focus on modern electric drive applications. The book includes basic theory, illustrative examples, and contains helpful practice problems designed to enhance comprehension. The text offers information on Tesla's rotating magnetic field, which is the foundation of reference frame theory and explores in detail the reference frame theory. The authors also review permanent-magnet ac, synchronous, and induction machines. In each chapter, the material is arranged so that if steady-state operation is the main concern, the reference frame derivation can be de-emphasized and focus placed on the steady state equations that are similar in form for all machines. This important new edition: • Features an expanded section on Power Electronics • Covers Tesla's rotating magnetic field • Contains information on the emerging applications of electric machines, and especially, modern electric drive applications • Includes online animations and a solutions manual for instructors Written for electrical engineering students and engineers working in the utility or automotive industry, Electromechanical Motion Devices offers an invaluable book for students and professionals interested in modern machine theory and applications.
The book reveals many different aspects of motion control and a wide multiplicity of approaches to the problem as well. Despite the number of examples, however, this volume is not meant to be exhaustive: it intends to offer some original insights for all researchers who will hopefully make their experience available for a forthcoming publication on the subject.
This book contains select green building, materials, and civil engineering papers from the 4th International Conference on Green Building, Materials and Civil Engineering (GBMCE), which was held in Hong Kong, August 21-22, 2014. This volume of proceedings aims to provide a platform for researchers, engineers, academics, and industry professionals f
A world list of books in the English language.
This Second Edition of Mechanical Design and Manufacturing of Electric Motors provides in-depth knowledge of design methods and developments of electric motors in the context of rapid increases in energy consumption, and emphasis on environmental protection, alongside new technology in 3D printing, robots, nanotechnology, and digital techniques, and the challenges these pose to the motor industry. From motor classification and design of motor components to model setup and material and bearing selections, this comprehensive text covers the fundamentals of practical design and design-related issues, modeling and simulation, engineering analysis, manufacturing processes, testing procedures, and performance characteristics of electric motors today. This Second Edition adds three brand new chapters on motor breaks, motor sensors, and power transmission and gearing systems. Using a practical approach, with a focus on innovative design and applications, the book contains a thorough discussion of major components and subsystems, such as rotors, shafts, stators, and frames, alongside various cooling techniques, including natural and forced air, direct- and indirect-liquid, phase change, and other newly-emerged innovative cooling methods. It also analyzes the calculation of motor power losses, motor vibration, and acoustic noise issues, and presents engineering analysis methods and case-study results. While suitable for motor engineers, designers, manufacturers, and end users, the book will also be of interest to maintenance personnel, undergraduate and graduate students, and academic researchers.