Download Free Electromagnetic Circuits And Devices Book in PDF and EPUB Free Download. You can read online Electromagnetic Circuits And Devices and write the review.

Revised, updated, and expanded, Electromagnetic Compatibility: Methods, Analysis, Circuits, and Measurement, Third Edition provides comprehensive practical coverage of the design, problem solving, and testing of electromagnetic compatibility (EMC) in electrical and electronic equipment and systems. This new edition provides novel information on theory, applications, evaluations, electromagnetic computational programs, and prediction techniques available. With sixty-nine schematics providing examples for circuit level electromagnetic interference (EMI) hardening and cost effective EMI problem solving, this book also includes 1130 illustrations and tables. Including extensive data on components and their correct implementation, the myths, misapplication, misconceptions, and fallacies that are common when discussing EMC/EMI will also be addressed and corrected.
Modern communications technology demands smaller, faster and more efficient circuits. This book reviews the fundamentals of electromagnetism in passive and active circuit elements, highlighting various effects and potential problems in designing a new circuit. The author begins with a review of the basics - the origin of resistance, capacitance, and inductance - then progresses to more advanced topics such as passive device design and layout, resonant circuits, impedance matching, high-speed switching circuits, and parasitic coupling and isolation techniques. Using examples and applications in RF and microwave systems, the author describes transmission lines, transformers, and distributed circuits. State-of-the-art developments in Si based broadband analog, RF, microwave, and mm-wave circuits are reviewed. With up-to-date results, techniques, practical examples, illustrations and worked examples, this book will be valuable to advanced undergraduate and graduate students of electrical engineering, and practitioners in the IC design industry. Further resources for this title are available at www.cambridge.org/9780521853507.
Presents a multi-objective design approach to the many power magnetic devices in use today Power Magnetic Devices: A Multi-Objective Design Approach addresses the design of power magnetic devices—including inductors, transformers, electromagnets, and rotating electric machinery—using a structured design approach based on formal single- and multi-objective optimization. The book opens with a discussion of evolutionary-computing-based optimization. Magnetic analysis techniques useful to the design of all the devices considered in the book are then set forth. This material is then used for inductor design so readers can start the design process. Core loss is next considered; this material is used to support transformer design. A chapter on force and torque production feeds into a chapter on electromagnet design. This is followed by chapters on rotating machinery and the design of a permanent magnet AC machine. Finally, enhancements to the design process including thermal analysis and AC conductor losses due to skin and proximity effects are set forth. Power Magnetic Devices: Focuses on the design process as it relates to power magnetic devices such as inductors, transformers, electromagnets, and rotating machinery Offers a structured design approach based on single- and multi-objective optimization Helps experienced designers take advantage of new techniques which can yield superior designs with less engineering time Provides numerous case studies throughout the book to facilitate readers’ comprehension of the analysis and design process Includes Powerpoint-slide-based student and instructor lecture notes and MATLAB-based examples, toolboxes, and design codes Designed to support the educational needs of students, Power Magnetic Devices: A Multi-Objective Design Approach also serves as a valuable reference tool for practicing engineers and designers. MATLAB examples are available via the book support site.
Computer Field Models of Electromagnetic Devices, volume 34 in the book series Studies in Applied Electromagnetics and Mechanics is devoted to modeling and simulation, control systems, testing, measurements, monitoring, diagnostics and advanced software
The book provides both the theoretical and the applied background needed to predict magnetic fields. The theoretical presentation is reinforced with over 60 solved examples of practical engineering applications such as the design of magnetic components like solenoids, which are electromagnetic coils that are moved by electric currents and activate other devices such as circuit breakers. Other design applications would be for permanent magnet structures such as bearings and couplings, which are hardware mechanisms used to fashion a temporary connection between two wires.This book is written for use as a text or reference by researchers, engineers, professors, and students engaged in the research, development, study, and manufacture of permanent magnets and electromechanical devices. It can serve as a primary or supplemental text for upper level courses in electrical engineering on electromagnetic theory, electronic and magnetic materials, and electromagnetic engineering.
If you're looking for a clear, comprehensive overview of basic electromagnetics principles and applications to antenna and microwave circuit design for communications, this authoritative book is your best choice. Including concise explanations of all required mathematical concepts needed to fully comprehend the material, the book is your complete resource for understanding electromagnetics in current, emerging and future broadband communication systems, as well as high-speed analogue and digital electronic circuits and systems.