Download Free Electromagnetic And Acoustic Waves In Bioengineering Applications Book in PDF and EPUB Free Download. You can read online Electromagnetic And Acoustic Waves In Bioengineering Applications and write the review.

The book deals with the analysis of oscillations, mechanical and electromagnetic waves, and their use in medicine. Each chapter contains the theoretical basis and the use of relevant phenomena in medical practice. Description of oscillations is important for understanding waves and the nature of magnetic resonance. A chapter on mechanical waves describes the origin and properties of sound, infrasound and ultrasound, their medical applications, and perception of sound by human hearing. A chapter on electromagnetic waves examines their origin, properties, and applications in therapy and diagnostics. Subsequent chapters describe how interference and diffraction lead to applications like optical imaging, holography, virtual reality, and perception of light by human vision. Also addressed is how quantum properties of radiation helped develop the laser scalpel, fluorescence microscopy, spectroscopy, X-rays, and gamma radiation.
Most books on nondestructive evaluation (NDE) focus either on the theoretical background or on advanced applications. Bridging the gap between the two, Ultrasonic and Electromagnetic NDE for Structure and Material Characterization: Engineering and Biomedical Applications brings together the principles, equations, and applications of ultrasonic and
This book highlights original research and high-quality technical briefs on electromagnetic wave propagation, radiation, and scattering, and their applications in industry and biomedical engineering. It also presents recent research achievements in the theoretical, computational, and experimental aspects of electromagnetic wave propagation, radiation, and scattering. The book is divided into three sections. Section 1 consists of chapters with general mathematical methods and approaches to the forward and inverse problems of wave propagation. Section 2 presents the problems of wave propagation in superconducting materials and porous media. Finally, Section 3 discusses various industry and biomedical applications of electromagnetic wave propagation, radiation, and scattering.
Electromagnetic Wave Propagation in Turbulence is devoted to a method for obtaining analytical solutions to problems of electromagnetic wave propagation in turbulence. In a systematic way the monograph presents the Mellin transforms to evaluate analytically integrals that are not in integral tables. Ample examples of application are outlined and solutions for many problems in turbulence theory are given. The method itself relates to asymptotic results that are applicable to a broad class of problems for which many asymptotic methods had to be employed previously.
This thesis covers a broad range of interdisciplinary topics concerning electromagnetic-acoustic (EM-Acoustic) sensing and imaging, mainly addressing three aspects: fundamental physics, critical biomedical applications, and sensing/imaging system design. From the fundamental physics perspective, it introduces several highly interesting EM-Acoustic sensing and imaging methods, which can potentially provide higher sensitivity, multi-contrast capability, and better imaging performance with less distortion. From the biomedical applications perspective, the thesis introduces useful techniques specifically designed to address selected challenging biomedical applications, delivering rich contrast, higher sensitivity and finer spatial resolution. Both phantom and ex vivo experiments are presented, and in vivo validations are progressing towards real clinical application scenarios. From the sensing and imaging system design perspective, the book proposes several promising sensing/imaging prototypes. Further, it offers concrete suggestions that could bring these systems closer to becoming “real” products and commercialization, such as replacing costly lasers with portable laser diodes, or integrating transmitting and data recording on a single board.
This book explores the potential of multi-functional carbon nanotubes for biomedical applications. It combines contributions from chemistry, physics, biology, engineering, and medicine. The complete overview of the state-of-the-art addresses different synthesis and biofunctionalisation routes and shows the structural and magnetic properties of nanotubes relevant to biomedical applications. Particular emphasis is put on the interaction of carbon nanotubes with biological environments, i.e. toxicity, biocompatibility, cellular uptake, intracellular distribution, interaction with the immune system and environmental impact. The insertion of NMR-active substances allows diagnostic usage as markers and sensors, e.g. for imaging and contactless local temperature sensing. The potential of nanotubes for therapeutic applications is highlighted by studies on chemotherapeutic drug filling and release, targeting and magnetic hyperthermia studies for anti-cancer treatment at the cellular level.
This unique volume contains selected papers presented at the 6th International Conference on Photonics and Imaging in Biology and Medicine (PIBM 2007), held on November 4?6, 2007 at Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, P R China. PIBM is designed to bring together scientists, engineers and clinical researchers from a variety of disciplines engaged in applying optical science, photonics and imaging technologies to problems in biology and medicine. The scope of this conference ranges from basic research to instrumentation engineering to biological and clinical studies. It is recognized as one of the largest and most comprehensive international conferences in China, and represents the highest level of worldwide research in this field. An increasing number of young researchers are presenting and exchanging their innovative ideas on this friendly and professional platform, thus making PIBM a not-to-be-missed annual meeting in Wuhan.
A direct solution of the heat conduction equation with prescribed initial and boundary conditions yields temperature distribution inside a specimen. The direct solution is mathematically considered as a well-posed one because the solution exists, is unique, and continuously depends on input data. The estimation of unknown parameters from the measured temperature data is known as the inverse problem of heat conduction. An error in temperature measurement, thermal time lagging, thermocouple-cavity, or signal noise data makes stability a problem in the estimation of unknown parameters. The solution of the inverse problem can be obtained by employing the gradient or non-gradient based inverse algorithm. The aim of this book is to analyze the inverse problem and heat exchanger applications in the fields of aerospace, mechanical, applied mechanics, environment sciences, and engineering.
Bioengineering Approaches to Cancer Diagnosis and Treatment is written for an audience of senior undergraduate students and graduate students in mechanical, electrical and biomedical engineering fields and other professionals in medicine. It is ideally structured for teaching and for those who are working in cancer bioengineering or interdisciplinary projects. The book's authors bring a unique perspective from their expertise in immunology, nanobiomaterials and heat transfer. Topical coverage includes an introduction to the fundamentals of bioengineering and engineering approaches for cancer diagnosis, cancer treatment via case studies, and sections on imaging, immunotherapy, cell therapy, drug delivery, ultrasound and microfluidics in cancer treatment. - Provides fully supported case studies relating to cancer diagnosis and therapy - Pairs the basic fundamentals of engineering and biomedical engineering and applies them to the diagnosis of cancer
This book provides an overview of the use of nanoparticles, carbon-nanotubes, liposomes, and nanopatterned flat surfaces for specific biomedical applications. This book explains the chemical and physical properties of the surface of these materials that allow their use in diagnosis, biosensing and bioimaging devices, drug delivery systems, and bone substitute implants. The toxicology of these particles is also discussed in the light of a new field referred to as nanotoxicology in this book. This book will be useful for engineers, researchers and industry professionals primarily in the fields of polymer science and engineering, materials science, surface science, nanocatalysis, biotechnology and biomedicine.