Download Free Electroluminescence I Book in PDF and EPUB Free Download. You can read online Electroluminescence I and write the review.

The volume "Electroluminescence" for the first time covers (almost) all kinds of electroluminescence. In its broadest sense electroluminescence is the conversion of electric power into optical power - light. The way, in which this goal is accomplished, and the goal, the application itself, has varied over time. First reported in the scientific literature in 1936 by the French physicist G. Destriau, it was for quite some decades the glow of a powder embedded in a resin under the action of an alternating voltage. The dream of "cold light" for illumination was born in the 50s. Modern semiconductor technology, using p-n juntion, but not in silicon or germanium, but in GaAs and GaP, created in the 70s the tiny Light emitting Diodes. Today about 50 for every human being have been sold. They are everywhere for signaling and display of numbers and short texts. And they are at the verge of an era of solid state lighting, replacing gradually incandescent bulbs and fluorescent lamps. In the first half of 1999 several j oint ventures between giants of the lighting industry and manufacturers of LEDs became known, including names as Philips, General Electric, Osram and Hewlett Packard, Emtron and Siemens, The reason, blue light emission of LEDs, for so long researched for unsuccessfully, has been achieved. Signaling, lighting will be the domains of LEDs in the next decades - a good start in the 21st millenium. But a the same time a paradigm shift in the display industry could come about. Dominated for the last 10 years by Liquid Crystal Displays (LCD), which are reflecting or transmitting light from extra light sources, self-emitting displays will challenge this dominance. Capable of handling very complex information by multiplexed addressing of millions of picture elements (pixels) in full color electroluminescence in the form of Organic LEDs and Thin Film Electroluminescence is gaining markets. Both technologies, much less matured than LED, incorporate much different physical features. The broad materials potential almost unexplored in both cases, they are good for surprises. The volume tries to present overviews ovber the 3 different technologies, covering in each case the mechanisms, the most important material properties, essential for the implementation of the working principles, the major applications and the system aspects. The reader will learn how the new long-life, maintenance free, power saving red traffic lights in the Silicon Valley function, and what the tail lights of his next car will be. The fascinating physics of polymer light emitters, eventually manufactured in a roll-to roll process, for cellular phones, or hand-held wireless computers, will become transparent. And why is it that up to now only sulfides can be used for the simplest design of displays capable of proven multiplex ratios of 1000? The comparison of the different electroluminescences, if this plural exists, will hopefully give experts of one of the fields, students of any of them, and application engineers new insights and ideas. Materials scientists and engineers will be caught by the comparison i n analyzing what else one could provide to improve performance.
The 1st edition of the book “Light-Emitting Diodes” was published in 2003. The 2nd edition was published in 2006. The 3rd edition was published in 2018. The current edition, the 2023 edition, is the most recent update of the book. The book is a thorough discussion of LEDs, particularly its semiconductor physics, electrical, optical, material science, thermal, mechanical, and chemical foundations. The book presents many fundamental aspects of LED technology and includes an in-depth discussion of white light-emitting diodes (LEDs), phosphor materials used in white LEDs, packaging technology, and the various efficiencies and efficacies encountered in the context of LEDs. The background of light, color science, and human vision is provided as well. The fully colored illustrations of the current edition are beneficial given the prominent role of light and color in the field of LEDs. The current edition is published in electronic PDF format in order to make the book affordable and easily accessible to a wide readership.
Revised and fully updated, the second edition of this graduate textbook offers a comprehensive explanation of the technology and physics of LEDs such as infrared, visible-spectrum, ultraviolet, and white LEDs made from III-V semiconductors. Elementary properties such as electrical and optical characteristics are reviewed, followed by the analysis of advanced device structures. With nine additional chapters, the treatment of LEDs has been vastly expanded, including new material on device packaging, reflectors, UV LEDs, III-V nitride materials, solid-state sources for illumination applications, and junction temperature. Radiative and non-radiative recombination dynamics, methods for improving light extraction, high-efficiency and high-power device designs, white-light emitters with wavelength-converting phosphor materials, optical reflectors, and spontaneous recombination in resonant-cavity structures are discussed in detail. With exercises, solutions, and illustrative examples, this textbook will be of interest to scientists and engineers working on LEDs and graduate students in electrical engineering, applied physics, and materials science.
This book covers all aspects of the technology and physics of infrared, visible-spectrum, and white-light-emitting diodes (LEDs) made from III–V semiconductors. The book reviews elementary properties of LEDs such as the electrical and optical characteristics. The author also reviews advanced device physics including high-efficiency device designs, light extraction, radiative and non-radiative recombination dynamics, spontaneous recombination in resonant-cavity structures, and packaging. The reader is introduced to areas related to visible-spectrum and white LEDs such as human vision, photometry, colorimetry, and color rendering. Application of infrared and visible-spectrum LEDs in silica fiber, plastic fiber, and free-space communication is discussed. Extensive semiconductor material data, device design data, and analytic formulas governing the operation of LEDs are provided. Exercises and illustrative examples are used to reinforce the topics discussed. An introductory chapter reviews the historical developments and milestones of LED research and development. This textbook will be of interest to scientists and engineers working on LEDs, notably in lighting, illumination and signage, and also to graduate students in electrical engineering, applied physics, and materials science.
The 1st edition of the book “Light-Emitting Diodes” was published in 2003. The 2nd edition was published in 2006. The current 3rd edition of the book, a substantial expansion of the second edition, has 37 Chapters and includes a thorough discussion of white light-emitting diodes (LEDs), phosphor materials used in white LEDs, an expanded discussion of the various efficiencies encountered in the context of LEDs, and packaging materials and device technology. The background of light, color science, and human vision is provided as well. In the current edition, the fully colored illustrations are highly beneficial given the prominent role of light and color in the field of LEDs. The book is intended to be a comprehensive discussion of LEDs, particularly the physics, chemistry, and engineering associated with LEDs. It is published in electronic format in order to make the book affordable and easily accessible to a wide readership.
Revised and fully updated, the Second Edition of this textbook offers a comprehensive explanation of the technology and physics of light-emitting diodes (LEDs) such as infrared, visible-spectrum, ultraviolet, and white LEDs made from III–V semiconductors. The elementary properties of LEDs such as electrical and optical characteristics are reviewed, followed by the analysis of advanced device structures. With nine additional chapters, the treatment of LEDs has been vastly expanded, including new material on device packaging, reflectors, UV LEDs, III–V nitride materials, solid-state sources for illumination applications, and junction temperature. Radiative and non-radiative recombination dynamics, methods for improving light extraction, high-efficiency and high-power device designs, white-light emitters with wavelength-converting phosphor materials, optical reflectors, and spontaneous recombination in resonant-cavity structures, are discussed in detail. Fields related to solid-state lighting such as human vision, photometry, colorimetry, and color rendering are covered beyond the introductory level provided in the first edition. The applications of infrared and visible spectrum LEDs in silica fiber, plastic fiber, and free-space communication are also discussed. Semiconductor material data, device design data, and analytic formulae governing LED operation are provided. With exercises, solutions and illustrative examples, this textbook will be of interest to scientists and engineers working on LEDs, and to graduate students in electrical engineering, applied physics, and materials science.
The introduction of innovative light sources, fibre laser sources and light emitting diodes, is opening unexpected perspectives into optical techniques and is promising new exciting applications in the field of biomedicine. Lasers and Current Optical Techniques in Biology aims to provide an overview of light sources, together with an extensive and authoritative description of the optical techniques in bio-medicine. This book is designed to give biomedical researchers a strong feel for the capability of physical approaches, promote new interdisciplinary interests and persuade more practitioners to take advantage of optical techniques. Current developments in a variety of optical techniques, including Near-Infra Red Spectroscopy, and traditional and advanced fluorescence techniques are covered, ranging from those that are becoming common practice to those that need much more experimentation before they can be accepted as real breakthroughs. Further topics include optical coherence tomography and its variations, polarised light imaging and, principle laser and lamp sources- a usually fragmentary topic, often dispersed among specialist publications. The wide range of topics covered make Lasers and Current Optical Techniques in Biology of interest to a diverse range of scientific communities.
Organic light-emitting diode(OLED) technology has achieved significant penetration in the commercial market for small, low-voltage and inexpensive displays. Present and future novel technologies based on OLEDs involve rigid and flexible flat panel displays, solid-state lighting, and lasers. Display applications may range from hand-held devices to large flat panel screens that can be rolled up or hung flat on a wall or a ceiling. Organic Electroluminescence gives an overview of the on-going research in the field of organic light-emitting materials and devices, covering the principles of electroluminescence in organic thin films, as well as recent trends, current applications, and future potential uses. The book begins by giving a background of organic electroluminescence in terms of history and basic principles. It offers details on the mechanism(s) of electroluminescence in thin organic films. It presentsin-depth discussions of the parameters that control the external electroluminescence quantum efficiency including the photoluminescence quantum yield, the light-output coupling factor, carrier/charge injection and transport, and electron and hole recombination processes in organic semiconductors. The authors address the design and the characterization of amorphous charge transport materials with high glass transition temperatures, light-emitting small molecules and conjugated polymers. The book covers state-of-the-art concepts and technologies such as fluorescent and phosphorescent OLEDs, various approaches for patterning organics, and active matrix organic emissive displays including their back panel thin film transistors and pixel electronics. It concludes by summarizing future directions for OLEDs in organic light-emitting displays, large area distributed solid state light sources, and lasers using organic thin films, nanostructures, and photonic crystals. Organic Electroluminescence is an excellent resource and reference for stu
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series.