Download Free Electrodynamics Of Solids Book in PDF and EPUB Free Download. You can read online Electrodynamics Of Solids and write the review.

The authors of this book present a thorough discussion of the optical properties of solids, with a focus on electron states and their response to electrodynamic fields. A review of the fundamental aspects of the propagation of electromagnetic fields, and their interaction with condensed matter, is given. This is followed by a discussion of the optical properties of metals, semiconductors, and collective states of solids such as superconductors. Theoretical concepts, measurement techniques and experimental results are covered in three interrelated sections. Well-established, mature fields are discussed (for example, classical metals and semiconductors) together with modern topics at the focus of current interest. The substantial reference list included will also prove to be a valuable resource for those interested in the electronic properties of solids. The book is intended for use by advanced undergraduate and graduate students, and researchers active in the fields of condensed matter physics, materials science and optical engineering.
This book presents the interdisciplinary field of solid electrodynamics and its applications in superconductor and microwave technologies. It gives scientists and engineers the foundation necessary to deal with theoretical and applied electromagnetics, continuum mechanics, applied superconductivity, high-speed electronic circuit design, microwave engineering and transducer technology.
The mechanics of electromagnetic materials and structures has been developing rapidly with extensive applications in, e. g. , electronics industry, nuclear engineering, and smart materials and structures. Researchers in this interdisciplinary field are with diverse background and motivation. The Symposium on the Mechanics of Electromagnetic Materials and Structures of the Fourth International Conference on Nonlinear Mechanics in Shanghai, China in August 13-16, 2002 provided an opportunity for an intimate gathering of researchers and exchange of ideas. This volume contains papers based on most of the presentations at the symposium, and articles from a few invited contributors. These papers reflect some of the recent activities in the mechanics of electromagnetic materials and structures. The first twelve papers are in the order in which they were listed in the program of the conference. These are followed by six invited papers in alphabetical order of the last names of the first authors. We would like to extend our sincere thanks to Professor David Y. Gao of Virginia Tech for suggesting the symposium, and to the authors for their time and effort invested in preparing their manuscripts. We are also grateful to Professor Daining Fang of Tsinghua University for co-chairing the symposium with J. S. Yang. Our special thanks belong to Kluwer for preparing this book for publication. J. S. Yang G. A. Maugin PIEZOELECTRIC VIBRATORY GYROSCOPES J. S.
This book is a detailed treatment of volume and surface force-densities and mechanical stresses in electrically and/or magnetically polarized bodies. The classical approach applies equally well to the electric and/or to the magnetic case. The issue of computation of force densities in materials is still a controversial one, but it is very important in many practical applications. These include the design of electric machines and various power apparatus, permanent magnet devices, and piezo-electric actuators and sensors. By combining electrodynamic theory, continuum mechanics and classical thermodynamics, important and reliable formulas for force densities are derived and settled. In particular, the well-known controversy between the Helmholtz and the Kelvin formulas for force densities in linear fluid dielectrics is analyzed in detail in the light of existing experimental results. * Thoroughly examines the role of mechanical stress tensor in electric and magnetic polarized materials; its connection with Maxwell's stress tensor is elucidated; the classical Cauchy's argument required to introduce the mechanic stress tensor (the Cauchy cut) is modified in such a way to be applicable to polarized materials * The constitutive relationships of polarized materials are derived from those holding for unpolarized materials * Closely examines the concept of electric and magnetic field energy and its connection with the thermodynamic internal energy of matter * Considers the role of magneto-hydro-statics (MHS) as a modern comprehensive theory including both magnetostatics and hydrostatics; describes several experimental MHS devices suited to test the theory * Examines magneticmaterials from both points of view: Coulombian and Amperian * Provides several different expressions for the resultant force and moment acting upon an electronically or magnetically polarized material body, and compares the two
This volume presents a state-of-the-art overview of the continuum theory of both electro- and magneto-sensitive elastomers and polymers, which includes mathematical and computational aspects of the modelling of these materials from the point of view of material properties and, in particular, the "smart-material" control of their mechanical properties.
This volume is a rigorous cross-disciplinary theoretical treatment of electromechanical and magnetomechanical interactions in elastic solids. Using the modern style of continuum thermomechanics (but without excessive formalism) it starts from basic principles of mechanics and electromagnetism, and goes on to unify these two fields in a common framework. It treats linear and nonlinear static and dynamic problems in a variety of elastic solids such as piezoelectrics, electricity conductors, ferromagnets, ferroelectrics, ionic crystals and ceramics. Chapters 1-3 are introductory, describing the essential properties of electromagnetic solids, the essentials of the thermomechanics of continua, and the general equations that govern the electrodynamics of nonlinear continua in the nonrelativistic framework (e.g. Maxwell's equations, the fundamental balance laws of continuum mechanics, basic thermodynamical inequalities for electromagnetic continua, jump relations for studying the propagation of shock waves, nonlinear constitutive equations for large classes of materials).The remainder of the text presents in detail special cases, applications, solved problems, and more complex schemes of electromagnetic matter. Chapters 4 and 5 examine material schemes whose description relies on the above-mentioned equations. Chapters 6 and 7 are more advanced, reporting on recent progress in the field.Suitable for graduate teaching, the volume will also be useful to research workers and engineers in the field of electromagnetomechanical interactions, and to those interested in the basic principles, mathematical developments and applications of electroelasticity and magnetoelasticity in a variety of solid materials, such as crystals, polycrystals, compounds and alloys.
Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed. The book further tackles current-current correlations; the fluctuation-dissipation theorem; and the effect of surface plasmons on optical properties and photoemission. People involved in the study of the optical properties of solids will find the book invaluable.
This book presents practical and relevant technological information about electromagnetic properties of materials and their applications. It is aimed at senior undergraduate and graduate students in materials science and is the product of many years of teaching basic and applied electromagnetism. Topics range from the spectroscopy and characterization of dielectrics, to non-linear effects, to ion-beam applications in materials.