Download Free Electrode Kinetics And Double Layer Structure Book in PDF and EPUB Free Download. You can read online Electrode Kinetics And Double Layer Structure and write the review.

Volumes 26 and 27 are both concerned with reactions occurring at electrodes arising through the passage of current. They provide an introduction to the study of electrode kinetics. The basic ideas and experimental methodology are presented in Volume 26, whilst Volume 27 deals with reactions at particular types of electrodes.Chapter 1 of the present volume deals with redox reactions at metal electrodes, Chapter 2 with semiconducting electrodes and Chapter 3 with reactions at metal oxide electrodes. Both theoretical aspects and experimental results are covered.
Volumes 26 and 27 are both concerned with reactions occurring at electrodes arising through the passage of current. They provide a comprehensive review of the study of electrode kinetics. The basic ideas and experimental methodology are presented in Volume 26 whilst Volume 27 deals with reactions at particular types of electrodes.Chapter 1 serves as an introduction to both volumes and is a survey of the fundamental principles of electrode kinetics. Chapter 2 deals with mass transport - how material gets to and from an electrode. Chapter 3 provides a review of linear sweep and cyclic voltammetry which constitutes an extensively used experimental technique in the field. Chapter 4 discusses a.c. and pulse methods which are a rich source of electrochemical information. Finally, chapter 5 discusses the use of electrodes in which there is forced convection, the so-called ``hydrodynamic electrodes''.
Offering a thorough explanation of electrode kinetics, this textbook emphasizes physical phenomena - rather than mathematical formalism - and elucidates the underlying principles of the different experimental techniques. Assuming an elementary knowledge of thermodynamics and chemical kinetics and minimal mathematical skills, coverage explores the arguments of two primary schools of thought: electrode kinetics and interfacial electrochemistry viewed as a branch of physical chemistry and from the perspective of analytical chemistry.
Electrochemistry plays a key role in a broad range of research and applied areas including the exploration of new inorganic and organic compounds, biochemical and biological systems, corrosion, energy applications involving fuel cells and solar cells, and nanoscale investigations. The Handbook of Electrochemistry serves as a source of electrochemical information, providing details of experimental considerations, representative calculations, and illustrations of the possibilities available in electrochemical experimentation. The book is divided into five parts: Fundamentals, Laboratory Practical, Techniques, Applications, and Data. The first section covers the fundamentals of electrochemistry which are essential for everyone working in the field, presenting an overview of electrochemical conventions, terminology, fundamental equations, and electrochemical cells, experiments, literature, textbooks, and specialized books. Part 2 focuses on the different laboratory aspects of electrochemistry which is followed by a review of the various electrochemical techniques ranging from classical experiments to scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry. Applications of electrochemistry include electrode kinetic determinations, unique aspects of metal deposition, and electrochemistry in small places and at novel interfaces and these are detailed in Part 4. The remaining three chapters provide useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials. * serves as a source of electrochemical information * includes useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials * reviews electrochemical techniques (incl. scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry)
As our knowledge of the mechanism of electrode processes increases, it becomes more and more apparent that the kinetic currents first observed by R. Brdicka and by K. Wiesner in the 1940's are very widely encountered. Very many electrode pro cesses contain a chemical stage. * This is true primarily of elec trode processes that involve organic compounds. Therefore, to understand the mechanism of electrode processes and, particular ly, to correctly interpret the results of polarographic investiga tions, it is important to know the characteristics and relationships controlling the chemical reactions taking place at the electrode surface. Generally, these reactions are substantially different from ordinary chemical reactions taking place in the bulk of the solution, since the reactions at the electrodes are often affected by the electric field of the electrode and the adsorption of the par ticipating compounds . The fact that hydrogen ions usuallY take part in the electro chemical reduction of organic compounds makes possible the use of electrochemical methods, particularly polarography, for the study of protolytic reactions. These reactions play an important role in organic chemistry: the majority of reactions of organic compounds in solutions go through a stage in which a hydrogen ion is removed or added (see, for example, [1, 2]). Therefore, the polarographic study of protolytic reactions can supply much important information to theoretical organic chemistry.