Download Free Electricity Marginal Cost Pricing Book in PDF and EPUB Free Download. You can read online Electricity Marginal Cost Pricing and write the review.

Packed with case studies and practical real-world examples, Electricity Marginal Cost Pricing Principles allows regulators, engineers and energy economists to choose the pricing model that best fits their individual market. Written by an author with 13 years of practical experience, the book begins with a clear and rigorous explanation of the theory of efficient pricing and how it impacts investor-owned, publicly-owned, and cooperatively-owned utilities using tried and true methods such as multiple-output, functional form, and multiproduct cost models. The author then moves on to include self-contained chapters on applying estimating cost models, including a cubic cost specification and policy implications while supplying actual data and examples to allow regulators, energy economists, and engineers to get a feel for the methods with which efficient prices are derived in today's challenging electricity market. - A guide to cost issues surrounding the generation, transmission, and distribution of electricity - Clearly explains cost models which can yield the marginal cost of supplying electricity to end-users - Real-world examples that are practical, meaningful, and easy to understand - Explans the policy implications of each example - Provide suggestions to aid in the formation of the optimal market price
A "quick look up guide," Electricity Cost Modeling Calculations places the relevant formulae and calculations at the reader's finger tips. In this book, theories are explained in a nutshell and then the calculation is presented and solved in an illustrated, step-by-step fashion. A valuable guide for new engineers, economists (or forecasters), regulators, and policy makers who want to further develop their knowledge of best practice calculations techniques or experienced practitioners (and even managers) who desire to acquire more useful tips, this book offers expert advice for using such cost models to determine optimally-sized distribution systems and optimally-structured power supplying entities. In other words, this book provides an Everything-that-you-want-to-know-about-cost-modelling-for-electric-utilities (but were afraid to ask) approach to modelling the cost of supplying electricity. In addition, the author covers the concept of multiproduct and multistage cost functions, which are appropriate in modelling the cost of supplying electricity. The author has done all the heavy number-crunching, and provides the reader with real-world, practical examples of how to properly quantify the costs associated with providing electric service, thus increasing the accuracy of the results and support for the policy initiatives required to ensure the competitiveness of the power suppliers in this new world in which we are living. The principles contained herein could be employed to assist in the determination of the cost-minimizing amount of output (i.e., electricity), which could then be used to determine whether a merger between two entities makes sense (i.e., would increase profitability). Other examples abound: public regulatory commissions also need help in determining whether mergers (or divestitures) are welfare-enhancing or not; ratemaking policies depend on costs and properly determining the costs of supplying electric (or gas, water, and local telephone) service. Policy makers, too, can benefit in terms of optimal market structure; after all, the premise of deregulation of the electric industry was predicated on the idea that generation could be deregulated. Unfortunately, the economies of vertical integration between the generation. - A comprehensive guide to the cost issues surrounding the generation, transmission, and distribution of electricity - Real-world examples that are practical, meaningful, and easy to understand - Policy implications and suggestions to aid in the formation of the optimal market structure going forward (thus increasing efficiency of electric power suppliers) - The principles contained herein could be employed to assist in the determination of the cost-minimizing amount of output
Explains the economics of electricity at each step of the supply chain: production, transportation and distribution, and retail.
The authors are prominent economists, operation researchers, and engineers who have been instrumental in the development of the conceptual framework for electric power restructuring both in the United States and in other countries. Rather than espousing a particular market design for the industry's future, each author focuses on an important issue or set of issues and tries to frame the questions for designing electricity markets using an international perspective. The book focuses on the economic and technical questions important in understanding the industry's long-term development rather than providing immediate answers for the current political debates on industry competition.
There is a need for fundamental changes in the ways society views electric energy. Electric energy must be treated as a commodity which can be bought, sold, and traded, taking into account its time-and space-varying values and costs. This book presents a complete framework for the establishment of such an energy marketplace. The framework is based on the use of spot prices. In general terms: o An hourly spot price (in dollars per kilowatt hour) reflects the operating and capital costs of generating, transmitting and distributing electric energy. It varies each hour and from place to place. o The spot price based energy marketplace involves a variety of utility-customer transactions (ranging from hourly varying prices to long-term, multiple-year contracts), all of which are based in a consistent manner on hourly spot prices. These transactions may include customers selling to, as well as buying from, the utility. The basic theory and practical implementation issues associated with a spot price based energy marketplace have been developed and discussed through a number of different reports, theses, and papers. Each addresses only a part of the total picture, and often with a somewhat different notation and terminology (which has evolved in parallel with our growing experience). This book was xvii xviii Preface written to serve as a single, integrated sourcebook on the theory and imple mentation of a spot price based energy marketplace.
Bridges the knowledge gap between engineering and economics in a complex and evolving deregulated electricity industry, enabling readers to understand, operate, plan and design a modern power system With an accessible and progressive style written in straight-forward language, this book covers everything an engineer or economist needs to know to understand, operate within, plan and design an effective liberalized electricity industry, thus serving as both a useful teaching text and a valuable reference. The book focuses on principles and theory which are independent of any one market design. It outlines where the theory is not implemented in practice, perhaps due to other over-riding concerns. The book covers the basic modelling of electricity markets, including the impact of uncertainty (an integral part of generation investment decisions and transmission cost-benefit analysis). It draws out the parallels to the Nordpool market (an important point of reference for Europe). Written from the perspective of the policy-maker, the first part provides the introductory background knowledge required. This includes an understanding of basic economics concepts such as supply and demand, monopoly, market power and marginal cost. The second part of the book asks how a set of generation, load, and transmission resources should be efficiently operated, and the third part focuses on the generation investment decision. Part 4 addresses the question of the management of risk and Part 5 discusses the question of market power. Any power system must be operated at all times in a manner which can accommodate the next potential contingency. This demands responses by generators and loads on a very short timeframe. Part 6 of the book addresses the question of dispatch in the very short run, introducing the distinction between preventive and corrective actions and why preventive actions are sometimes required. The seventh part deals with pricing issues that arise under a regionally-priced market, such as the Australian NEM. This section introduces the notion of regions and interconnectors and how to formulate constraints for the correct pricing outcomes (the issue of "constraint orientation"). Part 8 addresses the fundamental and difficult issue of efficient transmission investment, and finally Part 9 covers issues that arise in the retail market. Bridges the gap between engineering and economics in electricity, covering both the economics and engineering knowledge needed to accurately understand, plan and develop the electricity market Comprehensive coverage of all the key topics in the economics of electricity markets Covers the latest research and policy issues as well as description of the fundamental concepts and principles that can be applied across all markets globally Numerous worked examples and end-of-chapter problems Companion website holding solutions to problems set out in the book, also the relevant simulation (GAMS) codes
Deregulation is a fairly new paradigm in the electric power industry. And just as in the case of other industries where it has been introduced, the goal of deregulation is to enhance competition and bring consumers new choices and economic benefits. The process has, obviously, necessitated reformulation of established models of power system operation and control activities. Similarly, issues such as system reliability, control, security and power quality in this new environment have come in for scrutiny and debate. In this book, we attempt to present a comprehensive overview of the deregulation process that has developed till now, focussing on the operation aspects. As of now, restructured electricity markets have been established in various degrees and forms in many countries. This book comes at a time when the deregulation process is poised to undergo further rapid advancements. It is envisaged that the reader will benefit by way of an enhanced understanding of power system operations in the conventional vertically integrated environment vis-a-vis the deregulated environment. The book is aimed at a wide range of audience- electric utility personnel involved in scheduling, dispatch, grid operations and related activities, personnel involved in energy trading businesses and electricity markets, institutions involved in energy sector financing. Power engineers, energy economists, researchers in utilities and universities should find the treatment of mathematical models as well as emphasis on recent research work helpful.
Originally published in 1968, this book was one of the first full-scale published studies of the principles of investment planning and of the structure of marginal costs in a public enterprise. The concepts involved were more developed and applied in the world's electricity industries than elsewhere, and this book will be of interest to both engineers and administrators who are concerned with electricity supply, by setting out the characteristics of investment planning in this sector and the implications for cost analysis.
The first systematic presentation of electricity market design-from the basics to the cutting edge. Unique in its breadth and depth. Using examples and focusing on fundamentals, it clarifies long misunderstood issues-such as why today's markets are inherently unstable. The book reveals for the first time how uncoordinated regulatory and engineering policies cause boom-bust investment swings and provides guidance and tools for fixing broken markets. It also takes a provocative look at the operation of pools and power exchanges. * Part 1 introduces key economic, engineering and market design concepts. * Part 2 links short-run reliability policies with long-run investment problems. * Part 3 examines classic designs for day-ahead and real-time markets. * Part 4 covers market power, and * Part 5 covers locational pricing, transmission right and pricing losses. The non-technical introductions to all chapters allow easy access to the most difficult topics. Steering an independent course between ideological extremes, it provides background material for engineers, economists, regulators and lawyers alike. With nearly 250 figures, tables, side bars, and concisely-stated results and fallacies, the 44 chapters cover such essential topics as auctions, fixed-cost recovery from marginal cost, pricing fallacies, real and reactive power flows, Cournot competition, installed capacity markets, HHIs, the Lerner index and price caps. About the Author Steven Stoft has a Ph.D. in economics (U.C. Berkeley) as well as a background in physics, math, engineering, and astronomy. He spent a year inside FERC and now consults for PJM, California and private generators. Learn more at www.stoft.com.
The New York Times–bestselling author describes how current trends will create an era when anything and everything is available for almost nothing. In The Zero Marginal Cost Society, New York Times–bestselling author Jeremy Rifkin uncovers a paradox at the heart of capitalism that has propelled it to greatness but is now taking it to its death—the inherent entrepreneurial dynamism of competitive markets that drives productivity up and marginal costs down, enabling businesses to reduce the price of their goods and services in order to win over consumers and market share. (Marginal cost is the cost of producing additional units of a good or service, if fixed costs are not counted.) While economists have always welcomed a reduction in marginal cost, they never anticipated the possibility of a technological revolution that might bring marginal costs to near zero, making goods and services priceless, nearly free, and abundant, and no longer subject to market forces. Now, a formidable new technology infrastructure—the Internet of things (IoT)—is emerging with the potential of pushing large segments of economic life to near zero marginal cost in the years ahead. Rifkin describes how the Communication Internet is converging with an Energy Internet and Logistics Internet to create a new technology platform that connects all. There are billions of sensors feeding Big Data into an IoT global neural network. Prosumers can connect to the network and use Big Data, analytics, and algorithms to accelerate efficiency, dramatically increase productivity, and lower the marginal cost of producing and sharing a wide range of products and services to near zero, just like they now do with information goods. The plummeting of marginal costs is spawning a hybrid economy—part capitalist market and part Collaborative Commons—with far reaching implications for society, according to Rifkin. Hundreds of millions of people are already transferring parts of their economic lives to the global Collaborative Commons. Prosumers are plugging into the IoT and making and sharing their own information, entertainment, green energy, and 3D-printed products at near zero marginal cost. Students are enrolling in free massive open online courses (MOOCs) that operate at near zero marginal cost. Social entrepreneurs are even bypassing the banking establishment and using crowdfunding to finance startup businesses as well as creating alternative currencies in the fledgling sharing economy. In this new world, social capital is as important as financial capital, access trumps ownership, sustainability supersedes consumerism, cooperation ousts competition, and “exchange value” in the capitalist marketplace is increasingly replaced by “sharable value” on the Collaborative Commons. Rifkin concludes that capitalism will remain with us, albeit in an increasingly streamlined role, primarily as an aggregator of network services and solutions, allowing it to flourish as a powerful niche player in the coming era. We are, however, says Rifkin, entering a world beyond markets where we are learning how to live together in an increasingly interdependent global Collaborative Commons.