Download Free Electrical Power And Storage For Nasa Next Generation Aircraft Book in PDF and EPUB Free Download. You can read online Electrical Power And Storage For Nasa Next Generation Aircraft and write the review.

Next generation aircraft will incorporate more electrical power generation and storage for both a distributed electric propulsion system and onboard subsystems. The power generation in this type of aircraft will require orders of magnitude higher than today's commercial aircrafts, thus producing many challenges. For this reason, a unique, high-powered electric propulsion system primarily powered by a turbo-generator system with electrical storage is being considered. A Simulink/Matlab model has bee created for the electrical power system of the next generation blended wing commercial aircraft proposed by NASA. The components of the electrical system include turbo-generators, generators, battery banks, and electrical distribution systems. This thesis presents the development of the power generation, storage, and transmission of the electrical power required for typical commercial missions. All of the component models are integrated into an aircraft model and used to simulate typical flight profiles. The scalability of the model is demonstrated by developing the required distributed power system for a 50-passenger regional transport aircraft. The benefits of an all-electric aircraft are tremendous, but there are significant challenges in regard to the power generation and distribution requirements.
What are the benefits of electrified propulsion for large aircraft? What technology advancements are required to realize these benefits? How can the aerospace industry transition from today's technologies to state-of-the-art electrified systems? Learn the answers with this multidisciplinary text, combining expertise from leading researchers in electrified aircraft propulsion. The book includes broad coverage of electrification technologies – spanning power systems and power electronics, materials science, superconductivity and cryogenics, thermal management, battery chemistry, system design, and system optimization – and a clear-cut road map identifying remaining gaps between the current state-of-the-art and future performance technologies. Providing expert guidance on areas for future research and investment and an ideal introduction to cutting-edge advances and outstanding challenges in large electric aircraft design, this is a perfect resource for graduate students, researchers, electrical and aeronautical engineers, policymakers, and management professionals interested in next-generation commercial flight technologies.
The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.
An analysis of an electrical power and propulsion system for a 2-place general aviation aircraft is presented to provide a status of such modeling at NASA Glenn Research Center. The thermodynamic/ electrical model and mass prediction tools are described and the resulting system power and mass are shown. Three technology levels are used to predict the effect of advancements in component technology. Methods of fuel storage are compared by mass and volume. Prospects for future model development and validation at NASA as well as possible applications are also summarized. Freeh, Joshua E. and Liang, Anita D. and Berton, Jeffrey J. and Wickenheiser, Timothy J. Glenn Research Center NASA/TM-2003-212520, E-14082, NAS 1.15:212520
Green Aviation is the first authoritative overview of both engineering and operational measures to mitigate the environmental impact of aviation. It addresses the current status of measures to reduce the environmental impact of air travel. The chapters cover such items as: Engineering and technology-related subjects (aerodynamics, engines, fuels, structures, etc.), Operations (air traffic management and infrastructure) Policy and regulatory aspects regarding atmospheric and noise pollution. With contributions from leading experts, this volume is intended to be a valuable addition, and useful resource, for aerospace manufacturers and suppliers, governmental and industrial aerospace research establishments, airline and aviation industries, university engineering and science departments, and industry analysts, consultants, and researchers.
This book provides a comprehensive assessment and presentation of various feasible application of electric propulsion system, considering their weight, volume, reliability, and fault tolerance. The results of feasibility analysis can be used today or in the near future for development of electric propulsion system for the ships, planes, helicopters, and spacecrafts. To solve the above task, new theoretical approaches are applied, including combined random process methods, the Lz-transform technique for multistate systems, and statistical data processing.