Download Free Electrical And Optical Properties Of Gallium Phosphide Book in PDF and EPUB Free Download. You can read online Electrical And Optical Properties Of Gallium Phosphide and write the review.

A study has been made of the electrical and optical properties of gallium Phosphide green electroluminescent diodes which were formed by zinc or beryllium diffusions into n-type sulfur-doped GaP grown by the vapor-phase epitaxial technique on GaAs substrates. The objective was to determine the dominant current transport mechanisms and the dominant radiative recombination processes and to study their dependences on the electron carrier concentration. (Author).
$In\sb{1-{\rm x}}Ga\sb{\rm x}As\sb{\rm y}P\sb{1-{\rm y}}$ epilayers lattice matched to InP and $In\sb{1-{\rm x}}Ga\sb{\rm x}As\sb{\rm y}P\sb{1-{\rm y}}/InP$ Multiple Quantum Wells (MQWs) grown by Chemical-Beam Epitaxy (CBE) are being studied systematically using the Photovoltaic (PV) effect. At first, the Schottky barriers on the interfaces (metal-semiconductor, metal-insulator-semiconductor) are determined as an important factor for the electrical and optical properties of the samples. Samples with identical Schottky contact deposition but with an insulating layer on the front surface, have shown much smaller leakage current and yield enhanced barrier heights. The photovoltaic signal in the temperature interval 4-300K has maximum amplitude at about 150-180K for the MQW samples and at about 190K for the epilayer. An applied electric field changes the integrated intensity and spectrally shifts the allowed and forbidden transitions observed in bias dependent PV spectra of various InGaAsP/InP MQWs. The combined effect of two external factors, the thermal ionization and the electric field on the shape and magnitude of the 11H exciton peak, are discussed in terms of exciton binding energy and field ionization. The optically induced changes and energy shifting of the 11H/ exciton peak are observed, when excitation dependent double beam experiments are conducted on the $In\sb{0.72}Ga\sb{0.28}As\sb{0.68}P\sb{0.32}/InP$ MQWs. The photomodulation of the internal fields through carrier transport results in observing effective nonlinearities at milliwatt power levels. The experimentally measured transition energies for the MQWs show good agreement with the envelope wave function calculations. The observed Schottky barrier heights and band gap energies are consistent with the interpolation scheme estimations. (Abstract shortened by UMI.).