Download Free Electrical And Magnetic Properties Of Materials Book in PDF and EPUB Free Download. You can read online Electrical And Magnetic Properties Of Materials and write the review.

Annotation Provides materials engineers and scientists with a comparative listing of materials and their magnetic and electrical properties to aid in the materials selection process. The materials are sorted by a common materials hierarchy, and their property values are given in a consistent system of International Standard and customary units. The quality of the data and source of the data also are given to enable the user to assess the data. The 36 tables survey volume conductivity at ambient temperature, volume resistivity at high and low temperatures, thermal coefficient of resistivity, superconductors, relative permeability, coercive force, peak induction, residual induction, and curie temperature. No index. Annotation copyrighted by Book News Inc., Portland, OR
The present book on electrical, optical, magnetic and thermal properties of materials is in many aspects different from other introductory texts in solid state physics. First of all, this book is written for engineers, particularly materials and electrical engineers who want to gain a fundamental under standing of semiconductor devices, magnetic materials, lasers, alloys, etc. Second, it stresses concepts rather than mathematical formalism, which should make the presentation relatively easy to understand. Thus, this book provides a thorough preparation for advanced texts, monographs, or special ized journal articles. Third, this book is not an encyclopedia. The selection oftopics is restricted to material which is considered to be essential and which can be covered in a 15-week semester course. For those professors who want to teach a two-semester course, supplemental topics can be found which deepen the understanding. (These sections are marked by an asterisk [*]. ) Fourth, the present text leaves the teaching of crystallography, X-ray diffrac tion, diffusion, lattice defects, etc. , to those courses which specialize in these subjects. As a rule, engineering students learn this material at the beginning of their upper division curriculum. The reader is, however, reminded of some of these topics whenever the need arises. Fifth, this book is distinctly divided into five self-contained parts which may be read independently.
This book about electrical, electronic and magnetic properties of solids gives guidance to understand the electrical conduction processes and magnetism in a whole range of solids: ionic solids, metals, semiconductors, fast-ion conductors and superconductors. The experimental discussion is enriched by related theories like the free electron theory and the band theory of solids. A large spectrum of topics is presented in this book: Hall effect, magnetoresistance, physics of semiconductors, functioning of semiconductor devices, fast-ion conduction, classical and modern aspects of superconductivity. The book explains the magnetic properties of solids and theoretical and experimental aspects of the various manifestations of magnetism, dia-, para-, ferro-, antiferro- and ferri-magnetism. The consideration of magnetic symmetry, magnetic structures and their experimental determination completes the spectrum of the book. Theories, techniques and applications of NMR and ESR complete the analytical spectrum presented. Some of these topics are not represented in standard books. Each topic is thoroughly treated. There are historical remarks and a discussion of the role of symmetry in the book. The book lays great emphasis on principles and concepts and is written in a comprehensive way. It contains much new information. This book complements an earlier book by the same authors (Atomistic properties of solids - Springer, 2011).
An essential textbook for graduate courses on magnetism and an important source of practical reference data.
The second, updated edition of this essential reference book provides a wealth of detail on a wide range of electronic and photonic materials, starting from fundamentals and building up to advanced topics and applications. Its extensive coverage, with clear illustrations and applications, carefully selected chapter sequencing and logical flow, makes it very different from other electronic materials handbooks. It has been written by professionals in the field and instructors who teach the subject at a university or in corporate laboratories. The Springer Handbook of Electronic and Photonic Materials, second edition, includes practical applications used as examples, details of experimental techniques, useful tables that summarize equations, and, most importantly, properties of various materials, as well as an extensive glossary. Along with significant updates to the content and the references, the second edition includes a number of new chapters such as those covering novel materials and selected applications. This handbook is a valuable resource for graduate students, researchers and practicing professionals working in the area of electronic, optoelectronic and photonic materials.
A long overdue update, this edition of Introduction to Magnetism and Magnetic Materials is a complete revision of its predecessor. While it provides relatively minor updates to the first two sections, the third section contains vast updates to reflect the enormous progress made in applications in the past 15 years, particularly in magnetic recordin
Electronic materials provide the basis for many high tech industries that have changed rapidly in recent years. In this fully revised and updated second edition, the author discusses the range of available materials and their technological applications. Introduction to the Electronic Properties of Materials, 2nd Edition presents the principles of the behavior of electrons in materials and develops a basic understanding with minimal technical detail. Broadly based, it touches on all of the key issues in the field and offers a multidisciplinary approach spanning physics, electrical engineering, and materials science. It provides an understanding of the behavior of electrons within materials, how electrons determine the magnetic thermal, optical and electrical properties of materials, and how electronic properties are controlled for use in technological applications. Although some mathematics is essential in this area, the mathematics that is used is easy to follow and kept to an appropriate level for the reader. An excellent introductory text for undergraduate students, this book is a broad introduction to the topic and provides a careful balance of information that will be appropriate for physicists, materials scientists, and electrical engineers.
Written for students taking BTEC HNC and HND courses in electrical and electronic engineering, this book introduces the electric and magnetic properties of materials. It ranges from the basic concepts of atomic structure to the electrical properties of metals, semiconductors and insulators.
This book focuses on how to use magnetic material usefully for electrical motor drive system, especially electrical vehicles and power electronics. The contents have been selected in such a way that engineers in other fields might find some of the ideas difficult to grasp, but they can easily acquire a general or basic understanding of related concepts if they acquire even a rudimentary understanding of the selected contents.The cutting-edge technologies of magnetism are also explained. From the fundamental theory of magnetism to material, equipment, and applications, readers can understand the underlying concepts. Therefore, a new electric vehicle from the point of view of magnetic materials or a new magnetic material from the point of a view of electric vehicles can be envisioned: that is, magnetic material for motor drive systems based on fusion technology of an electromagnetic field. Magnetic material alone does not make up an electric vehicle, of course. Other components such as mechanical structure material, semiconductors, fuel cells, and electrically conductive material are important, and they are difficult to achieve. However, magnetic material involves one of the most important key technologies, and there are high expectations for its use in the future. It will be the future standard for motor-drive system researchers and of magneticmaterial researchers as well. This book is a first step in that direction.