Download Free Electric Vehicle Design Book in PDF and EPUB Free Download. You can read online Electric Vehicle Design and write the review.

A thoroughly revised third edition of this widely praised, bestselling textbook presents a comprehensive systems-level perspective of electric and hybrid vehicles with emphasis on technical aspects, mathematical relationships and basic design guidelines. The emerging technologies of electric vehicles require the dedication of current and future engineers, so the target audience for the book is the young professionals and students in engineering eager to learn about the area. The book is concise and clear, its mathematics are kept to a necessary minimum and it contains a well-balanced set of contents of the complex technology. Engineers of multiple disciplines can either get a broader overview or explore in depth a particular aspect of electric or hybrid vehicles. Additions in the third edition include simulation-based design analysis of electric and hybrid vehicles and their powertrain components, particularly that of traction inverters, electric machines and motor drives. The technology trends to incorporate wide bandgap power electronics and reduced rare-earth permanent magnet electric machines in the powertrain components have been highlighted. Charging stations are a critical component for the electric vehicle infrastructure, and hence, a chapter on vehicle interactions with the power grid has been added. Autonomous driving is another emerging technology, and a chapter is included describing the autonomous driving system architecture and the hardware and software needs for such systems. The platform has been set in this book for system-level simulations to develop models using various softwares used in academia and industry, such as MATLAB®/Simulink, PLECS, PSIM, Motor-CAD and Altair Flux. Examples and simulation results are provided in this edition using these software tools. The third edition is a timely revision and contribution to the field of electric vehicles that has reached recently notable markets in a more and more environmentally sensitive world.
Lightweight Electric/Hybrid Vehicle Design covers the particular automotive design approach required for hybrid/electrical drive vehicles. There is currently huge investment world-wide in electric vehicle propulsion, driven by concern for pollution control and depleting oil resources. The radically different design demands of these new vehicles requires a completely new approach that is covered comprehensively in this book. The book explores the rather dramatic departures in structural configuration necessary for purpose-designed electric vehicle including weight removal in the mechanical systems. It also provides a comprehensive review of the design process in the electric hybrid drive and energy storage systems. Ideal for automotive engineering students and professionals Lightweight Electric/Hybrid Vehicle Design provides a complete introduction to this important new sector of the industry. Comprehensive coverage of all design aspects of electric/hybrid cars in a single volume Packed with case studies and applications In-depth treatment written in a text book style (rather than a theoretical specialist text style)
A timely comprehensive reference consolidates the research and development of electric vehicle machines and drives for electric and hybrid propulsions • Focuses on electric vehicle machines and drives • Covers the major technologies in the area including fundamental concepts and applications • Emphasis the design criteria, performance analyses and application examples or potentials of various motor drives and machine systems • Accompanying website includes the simulation models and outcomes as supplementary material
ELECTRIC VEHICLE DESIGN This book will serve as a definitive guide to conceptual and practical knowledge about the design of hybrid electrical vehicles (HEV), battery electrical vehicles (BEV), fuel cell electrical vehicles (FCEV), plug-in hybrid electrical vehicles (PHEV), and efficient EV charging techniques with advanced tools and methodologies for students, engineers, and academics alike. This book deals with novel concepts related to fundamentals, design, and applications of conventional automobiles with internal combustion engines (ICEs), electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). It broadly covers vehicle performance, configuration, control strategy, design methodology, modeling, and simulation for different conventional and hybrid vehicles based on mathematical equations. Fundamental and practical examples of conventional electrical machines, advanced electrical machines, battery energy sources, on-board charging and off-board charging techniques, and optimization methods are presented here. This book can be useful for students, researchers, and practitioners interested in different problems and challenges associated with electric vehicles. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results.
Hybrid Electric Vehicle Technology provides foundational information about vehicles that use more than one propulsion technology to power a drive system. This textbook is filled with technical illustrations and concise descriptions of the different configurations and vehicle platforms, the operation of various systems and the technologies involved, and the maintenance of hybrid electric vehicles. Safety precautions required used when working around high-voltage vehicle systems, especially in emergencies, are highlighted.
Fully updated throughout, Electric Vehicle Technology, Second Edition, is a complete guide to the principles, design and applications of electric vehicle technology. Including all the latest advances, it presents clear and comprehensive coverage of the major aspects of electric vehicle development and offers an engineering-based evaluation of electric motor scooters, cars, buses and trains. This new edition includes: important new chapters on types of electric vehicles, including pickup and linear motors, overall efficiencies and energy consumption, and power generation, particularly for zero carbon emissions expanded chapters updating the latest types of EV, types of batteries, battery technology and other rechargeable devices, fuel cells, hydrogen supply, controllers, EV modeling, ancillary system design, and EV and the environment brand new practical examples and case studies illustrating how electric vehicles can be used to substantially reduce carbon emissions and cut down reliance on fossil fuels futuristic concept models, electric and high-speed trains and developments in magnetic levitation and linear motors an examination of EV efficiencies, energy consumption and sustainable power generation. MATLAB® examples can be found on the companion website www.wiley.com/go/electricvehicle2e Explaining the underpinning science and technology, this book is essential for practicing electrical, automotive, power, control and instrumentation engineers working in EV research and development. It is also a valuable reference for academics and students in automotive, mechanical, power and electrical engineering.
This book focuses on the design, informatics, and energy sustainability of automated and electric vehicles. Both principles and engineering practice have been addressed, from design perspectives toward informatics enabled transport service operation including automated valet parking and charging use cases. This is achieved by providing an in-depth study on a number of major topics such as battery management, eco-driving system, telecommunications, transport and charging services, cyber-security, etc. The book benefits researchers, engineers, and graduate students in the fields of the intelligent transport system, telecommunication, cyber-security, and smart grids.
This book describes the fundamentals and applications of wireless power transfer (WPT) in electric vehicles (EVs). Wireless power transfer (WPT) is a technology that allows devices to be powered without having to be connected to the electrical grid by a cable. Electric vehicles can greatly benefit from WPT, as it does away with the need for users to manually recharge the vehicles’ batteries, leading to safer charging operations. Some wireless chargers are available already, and research is underway to develop even more efficient and practical chargers for EVs. This book brings readers up to date on the state-of-the-art worldwide. In particular, it provides: • The fundamental principles of WPT for the wireless charging of electric vehicles (car, bicycles and drones), including compensation topologies, bi-directionality and coil topologies. • Information on international standards for EV wireless charging. • Design procedures for EV wireless chargers, including software files to help readers test their own designs. • Guidelines on the components and materials for EV wireless chargers. • Review and analysis of the main control algorithms applied to EV wireless chargers. • Review and analysis of commercial EV wireless charger products coming to the market and the main research projects on this topic being carried out worldwide. The book provides essential practical guidance on how to design wireless chargers for electric vehicles, and supplies MATLAB files that demonstrate the complexities of WPT technology, and which can help readers design their own chargers.