Download Free Electrets And Related Electrostatic Charge Storage Phenomena Book in PDF and EPUB Free Download. You can read online Electrets And Related Electrostatic Charge Storage Phenomena and write the review.

Physics of Dielectrics for the Engineer is a systematic attempt to clarify and correlate advanced concepts underlying the physics of dielectrics. It reviews the basics of electrostatics, the different models for the polarizability of atoms and molecules, and the macroscopic permittivity. It also discusses the behavior of matter in an alternating field in relation to complex permittivity, the interactions between field and matter, dissipative effects under high electric fields, the wide-gap semiconductor model, the types of charge carriers, and the main disruptive processes. Organized into three parts encompassing 12 chapters, this volume begins with an overview of the physical concepts involved in the behavior of insulating materials subjected to high electric fields. It then explores the potential of a group of charges, and dipoles induced in an applied field. The book explains statistical theories of dipole orientation in an applied field and theories relating molecular and macroscopic quantities. The propagation of an electromagnetic wave, dipole relaxation of defects in crystal lattices, and space-charge polarization and relaxation are also discussed. The book explains the uni-dimensional polar lattice, intrinsic and impurity conduction in wide-gap semiconductors, thermal runaway, and collision breakdown. Many problems with corresponding solutions are included to assist the reader. This book will benefit electrical engineers, as well as electrical engineering students, scientists, and technicians.
No detailed description available for "May 16".
No detailed description available for "16. November".
This volume contains the collected works of the eminent chemist and physicist Lars Onsager, one of the most influential scientists of the 20th Century.The volume includes Onsager's previously unpublished PhD thesis, a biography by H C Longuet-Higgins and M E Fisher, an autobiographical commentary, selected photographs, and a list of Onsager discussion remarks in print.Onsager's scientific achievements were characterized by deep insights into the natural sciences. His two best-known accomplishments are his reciprocal relations for irreversible processes, for which he received the 1968 Nobel Prize in Chemistry, and his explicit solution of the two-dimensional Ising model, a mathematical tour de force that created a sensation when it appeared. In addition, he made significant theoretical contributions to other fields, including electrolytes, colloids, superconductivity, turbulence, ice, electrons in metals, and dielectrics.In this volume, Onsager's contributions are divided into the following fields: irreversible processes; the Ising model; electrolytes; colloids; helium II and vortex quantization; off-diagonal long-range order and flux quantization; electrons in metal; turbulence; ion recombination; fluctuation theory; dielectrics; ice and water; biology; Mathieu functions. The different fields are evaluated by leading experts. The commentators are P W Anderson, R Askey, A Chorin, C Domb, R J Donnelly, W Ebeling, J-C Justice, H N W Lekkerkerker, P Mazur, H P McKean, J F Nagle, T Odijk, A B Pippard, G Stell, G H Weiss, and C N Yang.
Electron-Molecule Interactions and Their Applications, Volume 2 provides a balanced and comprehensive account of electron-molecule interactions in dilute and dense gases and liquid media. This book consists of six chapters. Chapter 1 deals with electron transfer reactions, while Chapter 2 discusses electron-molecular positive-ion recombination. The electron motion in high-pressure gases and electron-molecule interactions from single- to multiple-collision conditions is deliberated in Chapter 3. In Chapter 4, knowledge on electron-molecule interactions in gases is linked to that on similar processes in the liquid state. Selected examples on the translation of the results of basic research on electron-molecule interactions to application are reviewed in Chapter 5. The last chapter covers the electron affinity of molecules, atoms, and radicals. This volume is a good reference for students and researchers conducting work on the intricate ways electrons and molecules interact in their encounters.