Download Free Elastic Waves At High Frequencies Book in PDF and EPUB Free Download. You can read online Elastic Waves At High Frequencies and write the review.

Elastic Waves: High Frequency Theory is concerned with mathematical aspects of the theory of high-frequency elastic waves, which is based on the ray method. The foundations of elastodynamics are presented along with the basic theory of plane and spherical waves. The ray method is then described in considerable detail for bulk waves in isotropic and anisotropic media, and also for the Rayleigh waves on the surface of inhomogeneous anisotropic elastic solids. Much attention is paid to analysis of higher-order terms and to generation of waves in inhomogeneous media. The aim of the book is to present a clear, systematic description of the ray method, and at the same time to emphasize its mathematical beauty. Luckily, this beauty is usually not accompanied by complexity and mathematical ornateness.
John G. Harris intended to explain in this book the special techniques required to model the radiation and diffraction of elastic and surface waves. Sadly, he died before he could fulfil this ambition, but his plan has been brought to fruition by a team of his distinguished collaborators. The book begins with the basic underlying equations for wave motion and then builds upon this foundation by solving a number of fundamental scattering problems. The remaining chapters provide a thorough introduction to modern techniques that have proven essential to understanding radiation and diffraction at high frequencies. Graduate students, researchers and professionals in applied mathematics, physics and engineering will find that the chapters increase in complexity, beginning with plane-wave propagation and spectral analyses. Other topics include elastic wave theory, the Wiener–Hopf technique, the effects of viscosity on acoustic diffraction, and the phenomenon of channelling of wave energy along guided structures.
Ultrasound has found an increasing number of applications in recent years due to greatly increased computing power. Ultrasound devices are often preferred over other devices because of their lower cost, portability, and non-invasive nature. Patients using ultrasound can avoid the dangers of radiological imaging devices such as x-rays, CT scans, and radioactive media injections. Ultrasound is also a preferred and practical method of detecting material fatique and defects in metals, composites, semiconductors, wood, etc. - Detailed appendices contain useful formulas and their derivations, technical details of relevant theories - The FAQ format is used where a concept in one answer leads to a new Q
High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined. Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray representations of scattering by shells and other smooth objects; and caustics and associated diffraction catastrophes. The second chapter deals with the relation between sound pulses and the vibrational spectra of elastic submerged objects. The theory of the scattering of sound pulses from elastic and impenetrable objects is described, together with the theory of surface wave pulses. Target resonances and the singularity expansion method are also analyzed. This book will be of interest to physicists.
This volume contains a timely collection of research papers on the latest developments in the ever-increasing use of elastic waves in a variety of contexts. There are reports on wave-propagation in various types of media: in both isotropic and anisotropic bodies; in homogeneous and inhomogeneous media; in media with cracks or inclusions in random media; and in layered composites.The bulk of the papers are concerned with propagation in elastic media, but also included are viscoelastic, thermoelastic and magneto-electroelastic wave propagation, as well as waves in porous and piezo-electric bodies. Consideration is given to propagation in bodies as diverse as stretched elastic strings to surfaces such as thin walled cylinders, and thin films under stress. Applications considered include the determination of the depth of cracks; analysis of ground motions generated by a finite fault in seismology; surface wave spreading on piezo-electric solids; and dynamical stress intensity factors. Most of the papers are theoretical in nature, and many are complemented by numerical studies. Also included are a general survey on experimental techniques, and reports on experimental work.The volume will be of interest to those who do theoretical studies of elastic wave propagation and to those who apply elastic waves whether in seismology, non-destructive testing, the fabrication of devices or underwater acoustics, etc.
Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral equation research. Also, learning the fundamentals of linear elastic wave theory does not require a quantum leap for electromagnetic practitioners. Integral equation methods have been around for several decades, and their introduction to electromagnetics has been due to the seminal works of Richmond and Harrington in the 1960s. There was a surge in the interest in this topic in the 1980s (notably the work of Wilton and his coworkers) due to increased computing power. The interest in this area was on the wane when it was demonstrated that differential equation methods, with their sparse matrices, can solve many problems more efficiently than integral equation methods. Recently, due to the advent of fast algorithms, there has been a revival in integral equation methods in electromagnetics. Much of our work in recent years has been in fast algorithms for integral equations, which prompted our interest in integral equation methods. While previously, only tens of thousands of unknowns could be solved by integral equation methods, now, tens of millions of unknowns can be solved with fast algorithms. This has prompted new enthusiasm in integral equation methods. Table of Contents: Introduction to Computational Electromagnetics / Linear Vector Space, Reciprocity, and Energy Conservation / Introduction to Integral Equations / Integral Equations for Penetrable Objects / Low-Frequency Problems in Integral Equations / Dyadic Green's Function for Layered Media and Integral Equations / Fast Inhomogeneous Plane Wave Algorithm for Layered Media / Electromagnetic Wave versus Elastic Wave / Glossary of Acronyms
Elastic waves possess some remarkable properties and have become ever more important to applications in fields such as telecommunications (signal processing), medicine (echography), and metallurgy (non-destructive testing). These volumes serve as a bridge between basic books on wave phenomena and more technically oriented books on specific applications of wave phenomena. The first volume studies the different mechanisms of propagation in isotropic and anisotropic media. The second volume describes the generation and applications of free and guided waves.
In the last few decades, metamaterials have revolutionized the ways in which waves are controlled, and applied in physics and practical situations. The extraordinary properties of metamaterials, such as their locally resonant structure with deep subwavelength band gaps and their ranges of frequency where propagation is impossible, have opened the way to a host of applications that were previously unavailable. Acoustic metamaterials have been able to replace traditional treatments in several sectors, due to their better performance in targeted and tunable frequency ranges with strongly reduced dimensions. This is a training book composed of nine chapters written by experts in the field, giving a broad overview of acoustic metamaterials and their uses. The book is divided into three parts, covering the state-of-the-art, the fundamentals and the real-life applications of acoustic metamaterials.
This volume highlights the latest advances and innovations in the field of soil mechanics and geotechnical engineering, as presented by leading international researchers and engineers at the 5th International Conference on New Developments in Soil Mechanics and Geotechnical Engineering (ZM), held in Nicosia, Northern Cyprus on June 30-July 2, 2022. It covers a diverse range of topics such as soil properties and characterization; shallow and deep foundations; soil improvement; excavations, support systems, earth-retaining structures and underground systems; earthquake geotechnical engineering; stability of slopes and landslides; fills and embankments; environmental preservation, water and energy; modelling and analyses in geotechnical engineering. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.