Download Free Elastic And Inelastic Electron Transport Through Alkane Based Molecular Junctions Book in PDF and EPUB Free Download. You can read online Elastic And Inelastic Electron Transport Through Alkane Based Molecular Junctions and write the review.

The last decade has seen incredible growth in the quality of experiments being done on single molecule junctions. Contemporary experimental measurements have expanded far beyond simple electron transport. Measurement of vibronic effects, quantum interference and coherence effects, molecular optical response (Raman spectroscopy), and molecular spintronics are just some of the continuing areas of research in single molecule junctions. Experimental advancements demand advanced theoretical treatments, which can be used accurately within appropriate physical regimes, in order to understand measured phenomena and predict interesting directions for future study. In this dissertation we will study systems with strong intra-system interactions using a many-body states based approach. We will be focused on three related processes in molecular junctions: electron transport, electronic energy transfer, and molecular excitation. Inelastic electron transport in the regime of strong and nonlinear electron-vibration coupling within and outside of the Born-Oppenheimer regime will be investigated. To understand their appropriateness, we will compare simple semi-classical approximations in molecular redox junctions and electron-counting devices to fully quantum calculations based on many-body system states. The role of coherence and quantum interference in energy and electron transfer in molecular junctions is explored. Experiments that simultaneously measure surface enhanced Raman scattering and electron conduction have revealed a strong interaction between conducting electrons and molecular excitation. We investigate the role of the molecular response to a classical surface plasmon enhanced electric field considering the back action of the oscillating molecular dipole. Raman scattering is quantum mechanical by nature and involves strong interaction between surface plasmons in the contacts and the molecular excitation. We develop a scheme for treating strong plasmon-molecular excitation interactions quantum mechanically within nonequilibrium molecular junctions. Finally we perform preliminary calculations of the Raman spectrum of a three-ring oligophenylene vinylene terminating in amine functional groups molecule in a molecular junction and compare our results to experimental measurements. This work is the first steps towards full calculations of the optical response of current-carrying molecular junction, which should combine classical calculations of the plasmon enhanced electric field with quantum calculations for the plasmon-molecular exciton interaction and nonequilibrium Raman scattering.
A comprehensive overview of the physical mechanisms that control electron transport and the characteristics of metal-molecule-metal (MMM) junctions. As far as possible, methods and formalisms presented elsewhere to analyze electron transport through molecules are avoided. This title introduces basic concepts--a description of the electron transport through molecular junctions—and briefly describes relevant experimental methods. Theoretical methods commonly used to analyze the electron transport through molecules are presented. Various effects that manifest in the electron transport through MMMs, as well as the basics of density-functional theory and its applications to electronic structure calculations in molecules are presented. Nanoelectronic applications of molecular junctions and similar systems are discussed as well. Molecular electronics is a diverse and rapidly growing field. Transport Properties of Molecular Junctions presents an up-to-date survey of the field suitable for researchers and professionals.
This work is dedicated to development of a first-principle approach to study electron-vibration interactions on quantum transport properties. In the first part we discuss a general implementation for inelastic transport calculations based on maximally localized Wannier functions and non-equilibrium Green's functions. Our approach is designed to determine inelastic transport properties such as differential conductances, inelastic tunneling spectroscopies and nonequilibrium vibrational populations. Our approach is first applied to benzene molecular junctions connected to cumulene and carbon nanotube electrodes. In these examples, we discuss the role of the multichannel effect and of parity selection rules on the polarity of conductance steps, and the appearance of a non-monotonic behavior in the vibrational population. In the second part, we extend our formalism to study the effect of the electron-vibration interactions on the local current distribution. Using non-equilibrium Green's functions, we derive an expression for the local distribution of the inelastic current. Applying this to the benzene-cumulene junction, we show that the electron-vibration interaction can lead to a locally inverted current direction and the formation of loop currents. In the third part, we present a comprehensive study of the elastic and inelastic transport properties of carbon nanotube-zigzag graphene nanoribbon junctions, as realized in recent experiments, focusing on the local current distribution over the junctions. We calculate the local distribution of the elastic current to visualize the current injection pattern from the CNT electrodes to the ZGNRs and the current path inside the ZGNRs. For inelastic transport properties, we find a similarity in the IETS peaks and the corresponding vibrational configurations for the CNT/ZGNR/CNT junctions with different widths. As observed in the benzene-cumulene junction, we find that the inelastic current emerges from a complex network that includes loop currents. Our method and implementation can be generalized to other types of interactions, and is not limited to the electron-vibration interactions. Thus our work will be a starting point to understand the role of different and diverse interaction effects on quantum transport, using realistic predictive first-principle calculations.
G. C. Solomon C. Herrmann M. A. Ratner Molecular Electronic Junction Transport: Some Pathways and Some Ideas R. M. Metzger D. L. Mattern Unimolecular Electronic Devices B. Branchi F. C. Simeone M. A. Rampi Active and Non-Active Large-Area Metal–Molecules–Metal Junctions C. Li A. Mishchenko T. Wandlowski Charge Transport in Single Molecular Junctions at the Solid/Liquid Interface K. W. Hipps Tunneling Spectroscopy of Organic Monolayers and Single Molecules N. Renaud M. Hliwa C. Joachim Single Molecule Logical Devices
This book provides a comprehensive overview of the rapidly developing field of molecular electronics. It focuses on our present understanding of the electrical conduction in single-molecule circuits and provides a thorough introduction to the experimental techniques and theoretical concepts. It will also constitute as the first textbook-like introduction to both the experiment and theory of electronic transport through single atoms and molecules. In this sense, this publication will prove invaluable to both researchers and students interested in the field of nanoelectronics and nanoscience in general.Molecular Electronics is self-contained and unified in its presentation. It may be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.