Download Free Einsteins Space Time Book in PDF and EPUB Free Download. You can read online Einsteins Space Time and write the review.

This excellent textbook offers a unique take on relativity theory, setting it in its historical context. Ideal for those interested in relativity and the history of physics, the book contains a complete account of special relativity that begins with the historical analysis of the reasons that led to a change in our view of space and time. Its aim is to foster a deep understanding of relativistic spacetime and its consequences for Dynamics.
Einstein's theory of general relativity is a theory of gravity and, as in the earlier Newtonian theory, much can be learnt about the character of gravitation and its effects by investigating particular idealised examples. This book describes the basic solutions of Einstein's equations with a particular emphasis on what they mean, both geometrically and physically. Concepts such as big bang and big crunch-types of singularities, different kinds of horizons and gravitational waves, are described in the context of the particular space-times in which they naturally arise. These notions are initially introduced using the most simple and symmetric cases. Various important coordinate forms of each solution are presented, thus enabling the global structure of the corresponding space-time and its other properties to be analysed. The book is an invaluable resource both for graduate students and academic researchers working in gravitational physics.
This book, suitable for interested post-16 school pupils or undergraduates looking for a supplement to their course text, develops our modern view of space-time and its implications in the theories of gravity and cosmology. While aspects of this topic are inevitably abstract, the book seeks to ground thinking in observational and experimental evidence where possible. In addition, some of Einstein’s philosophical thoughts are explored and contrasted with our modern views. Written in an accessible yet rigorous style, Jonathan Allday, a highly accomplished writer, brings his trademark clarity and engagement to these fascinating subjects, which underpin so much of modern physics. Features: Restricted use of advanced mathematics, making the book suitable for post-16 students and undergraduates Contains discussions of key modern developments in quantum gravity, and the latest developments in the field, including results from the Laser Interferometer Gravitational-Wave Observatory (LIGO) Accompanied by appendices on the CRC Press website featuring detailed mathematical arguments for key derivations
The theory of relativity, explained by the greatest mind of the 20th century. Albert Einstein discusses the special and general theories of relativity, and the core concepts of modern cosmology, including time dilation, the spacetime continuum, and the energy-mass relationship, in simple non-mathematical terms.
This introduction to one of the liveliest and most popular fields in philosophy is written specifically for a beginning readership with no background in philosophy or science. Step-by-step analyses of the key arguments are provided and the philosophical heart of the issues is revealed without recourse to jargon, maths, or logical formulas. The book introduces Einstein's revolutionary ideas in a clear and simple way, along with the concepts and arguments of philosophers, both ancient and modern that have proved of lasting value. Specifically, the theories of the ancient Greek philosophers, Zeno, Euclid and Parmenides are considered alongside the ideas of Newton, Leibniz and Kant as well as the giants of twentieth-century physics, Einstein and Lorentz. The problems at the heart of the philosophy of space and time, such as change, motion, infinity, shape, and inflation, are examined and the seismic impact made by relativity theory and quantum theory is assessed in the light of the latest research. The writing is lucid and entertaining, allowing a beginning readership to grasp some difficult concepts while offering the more experienced reader a succinct and illuminating presentation of the state of the debate. "Space, Time and Einstein" shows the reader the excitement of scientific discovery and the beauty of theory in the search for answers to these fundamental questions.
A Nobel Laureate relates the fascinating story of Einstein and relativity theory in well-illustrated, nontechnical terms, discussing the meaning of time, gravity and its effect on light, the curving of space-time, more.
A renowned astrophysicist’s approachable introduction to Albert Einstein’s theory of relativity and its application in our daily lives. It is commonly assumed that if the Sun suddenly turned into a black hole, it would suck Earth and the rest of the planets into oblivion. Yet, as prominent author and astrophysicist Jeffrey Bennett points out, black holes don't suck. With that simple idea in mind, Bennett begins an entertaining introduction to Einstein's theories of relativity, describing the amazing phenomena readers would actually experience if they took a trip to a black hole. The theory of relativity reveals the speed of light as the cosmic speed limit, the mind-bending ideas of time dilation and curvature of spacetime, and what may be the most famous equation in history: E = mc2. Indeed, the theory of relativity shapes much of our modern understanding of the universe. It is not “just a theory”―every major prediction of relativity has been tested to exquisite precision, and its practical applications include the Global Positioning System (GPS). Amply illustrated and written in clear, accessible prose, Bennett's book proves anyone can grasp the basics of Einstein's ideas. His intuitive, nonmathematical approach gives a wide audience its first real taste of how relativity works and why it is so important to science and the way we view ourselves as human beings. “Well-written and uniquely readable . . . Bennett carefully avoids bombastic statements and “spectacularization” of the subject.” —Alberto Nicolis, Columbia University “I have read lots of introductions to relativity, but none is as clear and compelling as this one.” —Seth Shostak, Senior Astronomer, SETI Institute
A spacetime appetizer -- Relatively speaking -- Einstein on trial -- Wave talk and bar fights -- The lives of stars -- Clockwork precision -- Laser quest -- The path to perfection -- Creation stories -- Cold case -- Gotcha -- Black magic -- Nanoscience -- Follow-up questions -- Space invaders -- Surf's up for Einstein wave astronomy
Einstein's General Theory of Relativity leads to two remarkable predictions: first, that the ultimate destiny of many massive stars is to undergo gravitational collapse and to disappear from view, leaving behind a 'black hole' in space; and secondly, that there will exist singularities in space-time itself. These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.
Presenting the history of space-time physics, from Newton to Einstein, as a philosophical development DiSalle reflects our increasing understanding of the connections between ideas of space and time and our physical knowledge. He suggests that philosophy's greatest impact on physics has come about, less by the influence of philosophical hypotheses, than by the philosophical analysis of concepts of space, time and motion, and the roles they play in our assumptions about physical objects and physical measurements. This way of thinking leads to interpretations of the work of Newton and Einstein and the connections between them. It also offers ways of looking at old questions about a priori knowledge, the physical interpretation of mathematics, and the nature of conceptual change. Understanding Space-Time will interest readers in philosophy, history and philosophy of science, and physics, as well as readers interested in the relations between physics and philosophy.