Download Free Einstein From B To Z Book in PDF and EPUB Free Download. You can read online Einstein From B To Z and write the review.

John Stachel, the author of this collection of 37 published and unpublished articles on Albert Einstein, has written about Einstein and his work for over 40 years. Trained as a theoretical physicist specializing in the theory of relativity, he was chosen as the founding editor of The Collected papers of Albert Einstein 25 years ago, and is currently Director of the Boston University Center for Einstein Studies. Based on a detailed study of documentary evidence, much of which was newly discovered in the course of his work, Stachel debunks many of the old (and some new) myths about Einstein and offers novel insight into his life and work. Throughout the volume, a new, more human picture of Einstein is offered to replace the plaster saint of popular legend. In particular, a youthful Einstein emerges from the obscurity that previously shrouded his early years, and much new light is shed on the origins of the special and general theories of relativity. Also discussed in some detail are Einstein's troubled relationship with his first wife, his friendships with other physicists such as Eddington, Bose, and Pauli, and his Jewish identity. The essays are grouped thematically into the following areas: * The Human Side * Editing the Einstein Papers * Surveys of Einstein's Work * Special Relativity * General Relativity * Quantum Theory * Einstein and Other Scientists * Book Reviews Because the essays are independent of one another, readers will be able to dip into this collection to satisfy varying interests. It will be of particular interest to historians of 20th century science, working physicists, and students, as well as to the many members of the general reading public who continue to be fascinated by aspects of Einstein's life and work.
Our understanding of the physical universe underwent a revolution in the early twentieth century - evolving from the classical physics of Newton, Galileo, and Maxwell to the modern physics of relativity and quantum mechanics. The dominant figure in this revolutionary change was Albert Einstein. In a single year, 1905, Einstein produced breakthrough works in three areas of physics: on the size and the effects of atoms; on the quantization of the electromagnetic field; and on the special theory of relativity. In 1916 he produced a fourth breakthrough work, the general theory of relativity. A Student's Guide to Einstein's Major Papers focuses on Einstein's contributions, setting his major works into their historical context, and then takes the reader through the details of each paper, including the mathematics. This book helps the reader appreciate the simplicity and insightfulness of Einstein's ideas and how revolutionary his work was, and locate it in the evolution of scientific thought begun by the ancient Greek natural philosophers.
2) the globalization of capital has far outstripped the ability of current labor movements, organized at best on a national level, to conduct an effective defense of the interests of labor within capitalism, let alone to seriously challenge the cap italist system. To develop some form-or forms--of international organization of labor, long an ideological challenge ("Workers of the World Unite") has now become an urgent matter of survival for the labor movements of the world. Here is a challenge, on which I think broad agreement is possible: Even those who think capitalism is capable of indefinite survival must agree that it has functioned best in the past-for example, during the long period of post-World War II expansion when the power of capital has been effectively limited by the countervailing power of labor. Effective exercise of that power has always depended on overcoming the seg mentation of labor due to such factors as locality, race, gender, occupation, etc. , which stilIremain important. Above, I have singled out the two factors that today seem key to me: the split between mental and manual labor, and segmentation by nationality. Let all concerned about the current state of capitalism work to build up the countervailing power of labor, and let time show whether this results in nothing more than the better functioning of capitalism, or whether a new challenge to the system ultimately emerges.
An authoritative interdisciplinary account of the historic discovery of gravitational waves In 1915, Albert Einstein predicted the existence of gravitational waves—ripples in the fabric of spacetime caused by the movement of large masses—as part of the theory of general relativity. A century later, researchers with the Laser Interferometer Gravitational-Wave Observatory (LIGO) confirmed Einstein's prediction, detecting gravitational waves generated by the collision of two black holes. Shedding new light on the hundred-year history of this momentous achievement, Einstein Was Right brings together essays by two of the physicists who won the Nobel Prize for their instrumental roles in the discovery, along with contributions by leading scholars who offer unparalleled insights into one of the most significant scientific breakthroughs of our time. This illuminating book features an introduction by Tilman Sauer and invaluable firsthand perspectives on the history and significance of the LIGO consortium by physicists Barry Barish and Kip Thorne. Theoretical physicist Alessandra Buonanno discusses the new possibilities opened by gravitational wave astronomy, and sociologist of science Harry Collins and historians of science Diana Kormos Buchwald, Daniel Kennefick, and Jürgen Renn provide further insights into the history of relativity and LIGO. The book closes with a reflection by philosopher Don Howard on the significance of Einstein's theory for the philosophy of science. Edited by Jed Buchwald, Einstein Was Right is a compelling and thought-provoking account of one of the most thrilling scientific discoveries of the modern age.
For Albert Einstein, 1905 was a remarkable year. It was also a miraculous year for the history and future of science. In six short months, from March through September of that year, Einstein published five papers that would transform our understanding of nature. This unparalleled period is the subject of John Rigden's book, which deftly explains what distinguishes 1905 from all other years in the annals of science, and elevates Einstein above all other scientists of the twentieth century. Rigden chronicles the momentous theories that Einstein put forth beginning in March 1905: his particle theory of light, rejected for decades but now a staple of physics; his overlooked dissertation on molecular dimensions; his theory of Brownian motion; his theory of special relativity; and the work in which his famous equation, E = mc2, first appeared. Through his lucid exposition of these ideas, the context in which they were presented, and the impact they had--and still have--on society, Rigden makes the circumstances of Einstein's greatness thoroughly and captivatingly clear. To help readers understand how these ideas continued to develop, he briefly describes Einstein's post-1905 contributions, including the general theory of relativity. One hundred years after Einstein's prodigious accomplishment, this book invites us to learn about ideas that have influenced our lives in almost inconceivable ways, and to appreciate their author's status as the standard of greatness in twentieth-century science.
An ideal introduction to Einstein's general theory of relativity This unique textbook provides an accessible introduction to Einstein's general theory of relativity, a subject of breathtaking beauty and supreme importance in physics. With his trademark blend of wit and incisiveness, A. Zee guides readers from the fundamentals of Newtonian mechanics to the most exciting frontiers of research today, including de Sitter and anti-de Sitter spacetimes, Kaluza-Klein theory, and brane worlds. Unlike other books on Einstein gravity, this book emphasizes the action principle and group theory as guides in constructing physical theories. Zee treats various topics in a spiral style that is easy on beginners, and includes anecdotes from the history of physics that will appeal to students and experts alike. He takes a friendly approach to the required mathematics, yet does not shy away from more advanced mathematical topics such as differential forms. The extensive discussion of black holes includes rotating and extremal black holes and Hawking radiation. The ideal textbook for undergraduate and graduate students, Einstein Gravity in a Nutshell also provides an essential resource for professional physicists and is accessible to anyone familiar with classical mechanics and electromagnetism. It features numerous exercises as well as detailed appendices covering a multitude of topics not readily found elsewhere. Provides an accessible introduction to Einstein's general theory of relativity Guides readers from Newtonian mechanics to the frontiers of modern research Emphasizes symmetry and the Einstein-Hilbert action Covers topics not found in standard textbooks on Einstein gravity Includes interesting historical asides Features numerous exercises and detailed appendices Ideal for students, physicists, and scientifically minded lay readers Solutions manual (available only to teachers)
Albert Einstein (1879–1955) was the most influential physicist of the 20th century. Less well known is that fundamental philosophical problems, such as concept formation, the role of epistemology in developing and explaining the character of physical theories, and the debate between positivism and realism, played a central role in his thought as a whole. Thomas Ryckman shows that already at the beginning of his career - at a time when the twin pillars of classical physics, Newtonian mechanics and Maxwell’s electromagnetism were known to have but limited validity - Einstein sought to advance physical theory by positing certain physical principles as secure footholds. That philosophy produced his greatest triumph, the general theory of relativity, and his greatest failure, an unwillingness to accept quantum mechanics. This book shows that Einstein’s philosophy grew from a lifelong aspiration for a unified theoretical representation encompassing all physical phenomena. It also considers how Einstein’s theories of relativity and criticisms of quantum theory shaped the course of 20th-century philosophy of science. Including a chronology, glossary, chapter summaries, and suggestions for further reading, Einstein is an ideal introduction to this iconic figure in 20th-century science and philosophy. It is essential reading for students of philosophy of science, and is also suitable for those working in related areas such as physics, history of science, or intellectual history.
Albert Einstein and J. Robert Oppenheimer, two iconic scientists of the twentieth century, belonged to different generations, with the boundary marked by the advent of quantum mechanics. By exploring how these men differed—in their worldview, in their work, and in their day—this book provides powerful insights into the lives of two critical figures and into the scientific culture of their times. In Einstein’s and Oppenheimer’s philosophical and ethical positions, their views of nuclear weapons, their ethnic and cultural commitments, their opinions on the unification of physics, even the role of Buddhist detachment in their thinking, the book traces the broader issues that have shaped science and the world. Einstein is invariably seen as a lone and singular genius, while Oppenheimer is generally viewed in a particular scientific, political, and historical context. Silvan Schweber considers the circumstances behind this perception, in Einstein’s coherent and consistent self-image, and its relation to his singular vision of the world, and in Oppenheimer’s contrasting lack of certainty and related non-belief in a unitary, ultimate theory. Of greater importance, perhaps, is the role that timing and chance seem to have played in the two scientists’ contrasting characters and accomplishments—with Einstein’s having the advantage of maturing at a propitious time for theoretical physics, when the Newtonian framework was showing weaknesses. Bringing to light little-examined aspects of these lives, Schweber expands our understanding of two great figures of twentieth-century physics—but also our sense of what such greatness means, in personal, scientific, and cultural terms.
This book serves two purposes. The authors present important aspects of modern research on the mathematical structure of Einstein's field equations and they show how to extract their physical content from them by mathematically exact methods. The essays are devoted to exact solutions and to the Cauchy problem of the field equations as well as to post-Newtonian approximations that have direct physical implications. Further topics concern quantum gravity and optics in gravitational fields. The book addresses researchers in relativity and differential geometry but can also be used as additional reading material for graduate students.
This book presents a powerful way to study Einstein's special theory of relativity and its underlying hyperbolic geometry in which analogies with classical results form the right tool. The premise of analogy as a study strategy is to make the unfamiliar familiar. Accordingly, this book introduces the notion of vectors into analytic hyperbolic geometry, where they are called gyrovectors. Gyrovectors turn out to be equivalence classes that add according to the gyroparallelogram law just as vectors are equivalence classes that add according to the parallelogram law. In the gyrolanguage of this book, accordingly, one prefixes a gyro to a classical term to mean the analogous term in hyperbolic geometry. As an example, the relativistic gyrotrigonometry of Einstein's special relativity is developed and employed to the study of the stellar aberration phenomenon in astronomy.Furthermore, the book presents, for the first time, the relativistic center of mass of an isolated system of noninteracting particles that coincided at some initial time t = 0. It turns out that the invariant mass of the relativistic center of mass of an expanding system (like galaxies) exceeds the sum of the masses of its constituent particles. This excess of mass suggests a viable mechanism for the formation of dark matter in the universe, which has not been detected but is needed to gravitationally 'glue' each galaxy in the universe. The discovery of the relativistic center of mass in this book thus demonstrates once again the usefulness of the study of Einstein's special theory of relativity in terms of its underlying hyperbolic geometry.