Download Free Eigenvalues Inequalities And Ergodic Theory Book in PDF and EPUB Free Download. You can read online Eigenvalues Inequalities And Ergodic Theory and write the review.

The first and only book to make this research available in the West Concise and accessible: proofs and other technical matters are kept to a minimum to help the non-specialist Each chapter is self-contained to make the book easy-to-use
In this book, the functional inequalities are introduced to describe:(i) the spectrum of the generator: the essential and discrete spectrums, high order eigenvalues, the principle eigenvalue, and the spectral gap;(ii) the semigroup properties: the uniform intergrability, the compactness, the convergence rate, and the existence of density;(iii) the reference measure and the intrinsic metric: the concentration, the isoperimetic inequality, and the transportation cost inequality.
This book is representative of the work of Chinese probabilists on probability theory and its applications in physics. It presents a unique treatment of general Markov jump processes: uniqueness, various types of ergodicity, Markovian couplings, reversibility, spectral gap, etc. It also deals with a typical class of non-equilibrium particle systems, including the typical Schlögl model taken from statistical physics. The constructions, ergodicity and phase transitions for this class of Markov interacting particle systems, namely, reaction-diffusion processes, are presented. In this new edition, a large part of the text has been updated and two-and-a-half chapters have been rewritten. The book is self-contained and can be used in a course on stochastic processes for graduate students.
This monograph discusses recent advances in ergodic theory and dynamical systems. As a mixture of survey papers of active research areas and original research papers, this volume attracts young and senior researchers alike. Contents: Duality of the almost periodic and proximal relations Limit directions of a vector cocycle, remarks and examples Optimal norm approximation in ergodic theory The iterated Prisoner’s Dilemma: good strategies and their dynamics Lyapunov exponents for conservative twisting dynamics: a survey Takens’ embedding theorem with a continuous observable
This book contains original research papers by leading experts in the fields of probability theory, stochastic analysis, potential theory and mathematical physics. There is also a historical account on Masatoshi Fukushima's contribution to mathematics, as well as authoritative surveys on the state of the art in the field.
The analysis of eigenvalues of Laplace and Schrödinger operators is an important and classical topic in mathematical physics with many applications. This book presents a thorough introduction to the area, suitable for masters and graduate students, and includes an ample amount of background material on the spectral theory of linear operators in Hilbert spaces and on Sobolev space theory. Of particular interest is a family of inequalities by Lieb and Thirring on eigenvalues of Schrödinger operators, which they used in their proof of stability of matter. The final part of this book is devoted to the active research on sharp constants in these inequalities and contains state-of-the-art results, serving as a reference for experts and as a starting point for further research.
This book constitutes the proceedings of the 12th International Conference on Queueing Theory and Network Applications, QTNA 2017, held in Qinhuangdao, China, in August 2017. The 19 full papers included in this volume were carefully reviewed and selected from 65 initial submissions. They deal with queueing models; queueing applications; and network models.
The book provides a systemic treatment of time-dependent strong Markov processes with values in a Polish space. It describes its generators and the link with stochastic differential equations in infinite dimensions. In a unifying way, where the square gradient operator is employed, new results for backward stochastic differential equations and long-time behavior are discussed in depth. The book also establishes a link between propagators or evolution families with the Feller property and time-inhomogeneous Markov processes. This mathematical material finds its applications in several branches of the scientific world, among which are mathematical physics, hedging models in financial mathematics, and population models.
In June 2010, a conference, Probability Approximations and Beyond, was held at the National University of Singapore (NUS), in honor of pioneering mathematician Louis Chen. Chen made the first of several seminal contributions to the theory and application of Stein’s method. One of his most important contributions has been to turn Stein’s concentration inequality idea into an effective tool for providing error bounds for the normal approximation in many settings, and in particular for sums of random variables exhibiting only local dependence. This conference attracted a large audience that came to pay homage to Chen and to hear presentations by colleagues who have worked with him in special ways over the past 40+ years. The papers in this volume attest to how Louis Chen’s cutting-edge ideas influenced and continue to influence such areas as molecular biology and computer science. He has developed applications of his work on Poisson approximation to problems of signal detection in computational biology. The original papers contained in this book provide historical context for Chen’s work alongside commentary on some of his major contributions by noteworthy statisticians and mathematicians working today.