Download Free Efficient Neural Network Training Using Subsets Of Very Large Datasets Book in PDF and EPUB Free Download. You can read online Efficient Neural Network Training Using Subsets Of Very Large Datasets and write the review.

This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
This book constitutes the refereed proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, held in Poznan, Poland, in June 2019. The 22 revised full and 31 short papers presented were carefully reviewed and selected from 134 submissions. The papers are organized in the following topical sections: deep learning; simulation; knowledge representation; probabilistic models; behavior monitoring; clustering, natural language processing, and decision support; feature selection; image processing; general machine learning; and unsupervised learning.
In recent years, deep neural networks have surpassed human performance on image classification tasks and and speech recognition. While current models can reach state of the art performance on stand-alone benchmarks, deploying them on embedded systems that have real-time latency deadlines either cause them to fail these requirements or severely get degraded in performance to meet the stated specifications. This requires intelligent design of the network architecture in order to minimize the accuracy degradation while deployed on the edge. Similarly, deep learning often has a long turn-around time due to the volume of the experiments on different hyperparameters and consumes time and resources. This motivates a need for developing training strategies that allow researchers who do not have access to large computational resources to train large models without waiting for exorbitant training cycles to be completed. This dissertation addresses these concerns through data dependent pruning of deep learning computation. First, regarding inference, we propose an integration of two different conditional execution strategies we call FBS-pruned CondConv by noticing that if we use input-specific filters instead of standard convolutional filters, we can aggressively prune at higher rates and mitigate accuracy degradation for significant computation savings. Then, regarding long training times, we introduce our dynamic data pruning framework which takes ideas from active learning and reinforcement learning to dynamically select subsets of data to train the model. Finally, as opposed to pruning data and in the same spirit of reducing training time, we investigate the vision transformer and introduce a unique training method called PatchDrop (originally designed for robustness to occlusions on transformers [1]), which uses the self-supervised DINO [2] model to identify the salient patches in an image and train on the salient subsets of an image. These strategies/training methods take a step in a direction to make models more accessible to deploy on edge devices in an efficient inference context and reduces the barrier for the independent researcher to train deep learning models which would require immense computational resources, pushing towards the democratization of machine learning.
Due to the growing use of web applications and communication devices, the use of data has increased throughout various industries. It is necessary to develop new techniques for managing data in order to ensure adequate usage. Deep learning, a subset of artificial intelligence and machine learning, has been recognized in various real-world applications such as computer vision, image processing, and pattern recognition. The deep learning approach has opened new opportunities that can make such real-life applications and tasks easier and more efficient. Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications is a vital reference source that trends in data analytics and potential technologies that will facilitate insight in various domains of science, industry, business, and consumer applications. It also explores the latest concepts, algorithms, and techniques of deep learning and data mining and analysis. Highlighting a range of topics such as natural language processing, predictive analytics, and deep neural networks, this multi-volume book is ideally designed for computer engineers, software developers, IT professionals, academicians, researchers, and upper-level students seeking current research on the latest trends in the field of deep learning.
In recent years, deep neural networks have surpassed human performance on image classification tasks and and speech recognition. While current models can reach state of the art performance on stand-alone benchmarks, deploying them on embedded systems that have real-time latency deadlines either cause them to fail these requirements or severely get degraded in performance to meet the stated specifications. This requires intelligent design of the network architecture in order to minimize the accuracy degradation while deployed on the edge. Similarly, deep learning often has a long turn-around time due to the volume of the experiments on different hyperparameters and consumes time and resources. This motivates a need for developing training strategies that allow researchers who do not have access to large computational resources to train large models without waiting for exorbitant training cycles to be completed. This dissertation addresses these concerns through data dependent pruning of deep learning computation. First, regarding inference, we propose an integration of two different conditional execution strategies we call FBS-pruned CondConv by noticing that if we use input-specific filters instead of standard convolutional filters, we can aggressively prune at higher rates and mitigate accuracy degradation for significant computation savings. Then, regarding long training times, we introduce our dynamic data pruning framework which takes ideas from active learning and reinforcement learning to dynamically select subsets of data to train the model. Finally, as opposed to pruning data and in the same spirit of reducing training time, we investigate the vision transformer and introduce a unique training method called PatchDrop (originally designed for robustness to occlusions on transformers [1]), which uses the self-supervised DINO [2] model to identify the salient patches in an image and train on the salient subsets of an image. These strategies/training methods take a step in a direction to make models more accessible to deploy on edge devices in an efficient inference context and reduces the barrier for the independent researcher to train deep learning models which would require immense computational resources, pushing towards the democratization of machine learning.
In recent years neural computing has emerged as a practical technology, with successful applications in many fields. The majority of these applications are concerned with problems in pattern recognition, and make use of feedforward network architectures such as the multilayer perceptron and the radial basis function network. Also, it has become widely acknowledged that successful applications of neural computing require a principled, rather than ad hoc, approach. (From the preface to "Neural Networks for Pattern Recognition" by C.M. Bishop, Oxford Univ Press 1995.) This NATO volume, based on a 1997 workshop, presents a coordinated series of tutorial articles covering recent developments in the field of neural computing. It is ideally suited to graduate students and researchers.
In the recent years, we have witnessed a drastic increase in the dataset size across various disciplines. It is challenging to store and process this large data. Along with the lack of resources, the existing algorithms are proven to be computationally very expensive as this large data is stored on multiple clusters of machines. Although there are many new algorithms developed focusing on tweaking the architecture of deep neural networks to address the problem of massive data explosion, we focus on a more general problem. We develop a method to obtain a representative subset of the training data, such that the convex hulls of various classes are approximately preserved. We mainly focus on classification problems in machine learning. We first study linear classification models, and then extend our ideas to non-linear classifiers. We develop a randomized extreme point algorithm that approximates the extreme points of a given set of points in high dimensions. We show that the performance of the model on the subsets found using this randomized algorithm are competitive with the performance found on the full dataset. Specifically, for a set of N data points in Rd, our algorithm has a computational complexity of O(MN2) independent of the dimension d. We extend our approach to develop efficient methods for data augmentation part by adding random noise. Data augmentation has proven to make the margin of classification thick, hence making the model more robust. Current methods augment the entire dataset randomly in an isotropic manner. We explore the domain with a focus on augmenting only the extreme points. Specifically, we portray methods to augment the extreme points in specific direction, such that the convex hull of the augmented points along with the extreme points contains the whole dataset. The specific directions are carefully chosen such that the augmented points do not lie within the convex hull of extreme points. Towards this, we demonstrate a further reduction in size while still achieving a similar performance as the solution found on the full dataset. We further extend our ideas to non linear separable dataset, and demonstrate the interpretability property of the chosen extreme points. We demonstrate the effectiveness of our approach for both training and data augmentation on the standard MNIST data set.
The two-volume set IFIP AICT 363 and 364 constitutes the refereed proceedings of the 12th International Conference on Engineering Applications of Neural Networks, EANN 2011, and the 7th IFIP WG 12.5 International Conference, AIAI 2011, held jointly in Corfu, Greece, in September 2011. The 52 revised full papers and 28 revised short papers presented together with 31 workshop papers were carefully reviewed and selected from 150 submissions. The first volume includes the papers that were accepted for presentation at the EANN 2011 conference. They are organized in topical sections on computer vision and robotics, self organizing maps, classification/pattern recognition, financial and management applications of AI, fuzzy systems, support vector machines, learning and novel algorithms, reinforcement and radial basis function ANN, machine learning, evolutionary genetic algorithms optimization, Web applications of ANN, spiking ANN, feature extraction minimization, medical applications of AI, environmental and earth applications of AI, multi layer ANN, and bioinformatics. The volume also contains the accepted papers from the Workshop on Applications of Soft Computing to Telecommunication (ASCOTE 2011), the Workshop on Computational Intelligence Applications in Bioinformatics (CIAB 2011), and the Second Workshop on Informatics and Intelligent Systems Applications for Quality of Life Information Services (ISQLIS 2011).