Download Free Efficient Data Association Algorithms For Multiple Target Tracking Book in PDF and EPUB Free Download. You can read online Efficient Data Association Algorithms For Multiple Target Tracking and write the review.

Expert coverage of the design and implementation of state estimation algorithms for tracking and navigation Estimation with Applications to Tracking and Navigation treats the estimation of various quantities from inherently inaccurate remote observations. It explains state estimator design using a balanced combination of linear systems, probability, and statistics. The authors provide a review of the necessary background mathematical techniques and offer an overview of the basic concepts in estimation. They then provide detailed treatments of all the major issues in estimation with a focus on applying these techniques to real systems. Other features include: * Problems that apply theoretical material to real-world applications * In-depth coverage of the Interacting Multiple Model (IMM) estimator * Companion DynaEst(TM) software for MATLAB(TM) implementation of Kalman filters and IMM estimators * Design guidelines for tracking filters Suitable for graduate engineering students and engineers working in remote sensors and tracking, Estimation with Applications to Tracking and Navigation provides expert coverage of this important area.
- The first book, by the leading experts, on this rapidly developing field with applications to security, smart homes, multimedia, and environmental monitoring - Comprehensive coverage of fundamentals, algorithms, design methodologies, system implementation issues, architectures, and applications - Presents in detail the latest developments in multi-camera calibration, active and heterogeneous camera networks, multi-camera object and event detection, tracking, coding, smart camera architecture and middleware This book is the definitive reference in multi-camera networks. It gives clear guidance on the conceptual and implementation issues involved in the design and operation of multi-camera networks, as well as presenting the state-of-the-art in hardware, algorithms and system development. The book is broad in scope, covering smart camera architectures, embedded processing, sensor fusion and middleware, calibration and topology, network-based detection and tracking, and applications in distributed and collaborative methods in camera networks. This book will be an ideal reference for university researchers, R&D engineers, computer engineers, and graduate students working in signal and video processing, computer vision, and sensor networks. Hamid Aghajan is a Professor of Electrical Engineering (consulting) at Stanford University. His research is on multi-camera networks for smart environments with application to smart homes, assisted living and well being, meeting rooms, and avatar-based communication and social interactions. He is Editor-in-Chief of Journal of Ambient Intelligence and Smart Environments, and was general chair of ACM/IEEE ICDSC 2008. Andrea Cavallaro is Reader (Associate Professor) at Queen Mary, University of London (QMUL). His research is on target tracking and audiovisual content analysis for advanced surveillance and multi-sensor systems. He serves as Associate Editor of the IEEE Signal Processing Magazine and the IEEE Trans. on Multimedia, and has been general chair of IEEE AVSS 2007, ACM/IEEE ICDSC 2009 and BMVC 2009. - The first book, by the leading experts, on this rapidly developing field with applications to security, smart homes, multimedia, and environmental monitoring - Comprehensive coverage of fundamentals, algorithms, design methodologies, system implementation issues, architectures, and applications - Presents in detail the latest developments in multi-camera calibration, active and heterogeneous camera networks, multi-camera object and event detection, tracking, coding, smart camera architecture and middleware
The monograph written by John Mullane, Ba-Ngu Vo, Martin Adams and Ba-Tuong Vo is devoted to the field of autonomous robot systems, which have been receiving a great deal of attention by the research community in the latest few years. The contents are focused on the problem of representing the environment and its uncertainty in terms of feature based maps. Random Finite Sets are adopted as the fundamental tool to represent a map, and a general framework is proposed for feature management, data association and state estimation. The approaches are tested in a number of experiments on both ground based and marine based facilities.
In the human quest for scientific knowledge, empirical evidence is collected by visual perception. Tracking with computer vision takes on the important role to reveal complex patterns of motion that exist in the world we live in. Multi-object tracking algorithms provide new information on how groups and individual group members move through three-dimensional space. They enable us to study in depth the relationships between individuals in moving groups. These may be interactions of pedestrians on a crowded sidewalk, living cells under a microscope, or bats emerging in large numbers from a cave. Being able to track pedestrians is important for urban planning; analysis of cell interactions supports research on biomaterial design; and the study of bat and bird flight can guide the engineering of aircraft. We were inspired by this multitude of applications to consider the crucial component needed to advance a single-object tracking system to a multi-object tracking system—data association. Data association in the most general sense is the process of matching information about newly observed objects with information that was previously observed about them. This information may be about their identities, positions, or trajectories. Algorithms for data association search for matches that optimize certain match criteria and are subject to physical conditions. They can therefore be formulated as solving a "constrained optimization problem"—the problem of optimizing an objective function of some variables in the presence of constraints on these variables. As such, data association methods have a strong mathematical grounding and are valuable general tools for computer vision researchers. This book serves as a tutorial on data association methods, intended for both students and experts in computer vision. We describe the basic research problems, review the current state of the art, and present some recently developed approaches. The book covers multi-object tracking in two and three dimensions. We consider two imaging scenarios involving either single cameras or multiple cameras with overlapping fields of view, and requiring across-time and across-view data association methods. In addition to methods that match new measurements to already established tracks, we describe methods that match trajectory segments, also called tracklets. The book presents a principled application of data association to solve two interesting tasks: first, analyzing the movements of groups of free-flying animals and second, reconstructing the movements of groups of pedestrians. We conclude by discussing exciting directions for future research.
Here's a thorough overview of the state-of-the-art in design and implementation of advanced tracking for single and multiple sensor systems. This practical resource provides modern system designers and analysts with in-depth evaluations of sensor management, kinematic and attribute data processing, data association, situation assessment, and modern tracking and data fusion methods as applied in both military and non-military arenas.
The emerging technology of multisensor data fusion has a wide range of applications, both in Department of Defense (DoD) areas and in the civilian arena. The techniques of multisensor data fusion draw from an equally broad range of disciplines, including artificial intelligence, pattern recognition, and statistical estimation. With the rapid evolut
Introduces object tracking algorithms from a unified, recursive Bayesian perspective, along with performance bounds and illustrative examples.