Download Free Efficient And Scalable Graph View Maintenance For Deductive Graph Databases Based On Generalized Discrimination Networks Book in PDF and EPUB Free Download. You can read online Efficient And Scalable Graph View Maintenance For Deductive Graph Databases Based On Generalized Discrimination Networks and write the review.

Graph databases provide a natural way of storing and querying graph data. In contrast to relational databases, queries over graph databases enable to refer directly to the graph structure of such graph data. For example, graph pattern matching can be employed to formulate queries over graph data. However, as for relational databases running complex queries can be very time-consuming and ruin the interactivity with the database. One possible approach to deal with this performance issue is to employ database views that consist of pre-computed answers to common and often stated queries. But to ensure that database views yield consistent query results in comparison with the data from which they are derived, these database views must be updated before queries make use of these database views. Such a maintenance of database views must be performed efficiently, otherwise the effort to create and maintain views may not pay off in comparison to processing the queries directly on the data from which the database views are derived. At the time of writing, graph databases do not support database views and are limited to graph indexes that index nodes and edges of the graph data for fast query evaluation, but do not enable to maintain pre-computed answers of complex queries over graph data. Moreover, the maintenance of database views in graph databases becomes even more challenging when negation and recursion have to be supported as in deductive relational databases. In this technical report, we present an approach for the efficient and scalable incremental graph view maintenance for deductive graph databases. The main concept of our approach is a generalized discrimination network that enables to model nested graph conditions including negative application conditions and recursion, which specify the content of graph views derived from graph data stored by graph databases. The discrimination network enables to automatically derive generic maintenance rules using graph transformations for maintaining graph views in case the graph data from which the graph views are derived change. We evaluate our approach in terms of a case study using multiple data sets derived from open source projects.
Graph queries have lately gained increased interest due to application areas such as social networks, biological networks, or model queries. For the relational database case the relational algebra and generalized discrimination networks have been studied to find appropriate decompositions into subqueries and ordering of these subqueries for query evaluation or incremental updates of query results. For graph database queries however there is no formal underpinning yet that allows us to find such suitable operationalizations. Consequently, we suggest a simple operational concept for the decomposition of arbitrary complex queries into simpler subqueries and the ordering of these subqueries in form of generalized discrimination networks for graph queries inspired by the relational case. The approach employs graph transformation rules for the nodes of the network and thus we can employ the underlying theory. We further show that the proposed generalized discrimination networks have the same expressive power as nested graph conditions.
Developing large software projects is a complicated task and can be demanding for developers. Continuous integration is common practice for reducing complexity. By integrating and testing changes often, changesets are kept small and therefore easily comprehensible. Travis CI is a service that offers continuous integration and continuous deployment in the cloud. Software projects are build, tested, and deployed using the Travis CI infrastructure without interrupting the development process. This report describes how Travis CI works, presents how time-driven, periodic building is implemented as well as how CI data visualization can be done, and proposes a way of dealing with dependency problems.
Design and implementation of service-oriented architectures impose numerous research questions from the fields of software engineering, system analysis and modeling, adaptability, and application integration. Service-oriented Systems Engineering represents a symbiosis of best practices in object orientation, component-based development, distributed computing, and business process management. It provides integration of business and IT concerns. Service-oriented Systems Engineering denotes a current research topic in the field of IT-Systems Engineering with high potential in academic research and industrial application. The annual Ph.D. Retreat of the Research School provides all members the opportunity to present the current state of their research and to give an outline of prospective Ph.D. projects. Due to the interdisciplinary structure of the Research School, this technical report covers a wide range of research topics. These include but are not limited to: Human Computer Interaction and Computer Vision as Service; Service-oriented Geovisualization Systems; Algorithm Engineering for Service-oriented Systems; Modeling and Verification of Self-adaptive Service-oriented Systems; Tools and Methods for Software Engineering in Service-oriented Systems; Security Engineering of Service-based IT Systems; Service-oriented Information Systems; Evolutionary Transition of Enterprise Applications to Service Orientation; Operating System Abstractions for Service-oriented Computing; and Services Specification, Composition, and Enactment.
Traditionally, business process management systems only execute and monitor business process instances based on events that originate from the process engine itself or from connected client applications. However, environmental events may also influence business process execution. Recent research shows how the technological improvements in both areas, business process management and complex event processing, can be combined and harmonized. The series of technical reports included in this collection provides insights in that combination with respect to technical feasibility and improvements based on real-world use cases originating from the EU-funded GET Service project – a project targeting transport optimization and green-house gas reduction in the logistics domain. Each report is complemented by a working prototype. This collection introduces six use cases from the logistics domain. Multiple transports – each being a single process instance – may be affected by the same events at the same point in time because of (partly) using the same transportation route, transportation vehicle or transportation mode (e.g. containers from multiple process instances on the same ship) such that these instances can be (partly) treated as batch. Thus, the first use case shows the influence of events to process instances processed in a batch. The case of sharing the entire route may be, for instance, due to origin from the same business process (e.g. transport three containers, where each is treated as single process instance because of being transported on three trucks) resulting in multi-instance process executions. The second use case shows how to handle monitoring and progress calculation in this context. Crucial to transportation processes are frequent changes of deadlines. The third use case shows how to deal with such frequent process changes in terms of propagating the changes along and beyond the process scope to identify probable deadline violations. While monitoring transport processes, disruptions may be detected which introduce some delay. Use case four shows how to propagate such delay in a non-linear fashion along the process instance to predict the end time of the instance. Non-linearity is crucial in logistics because of buffer times and missed connection on intermodal transports (a one-hour delay may result in a missed ship which is not going every hour). Finally, use cases five and six show the utilization of location-based process monitoring. Use case five enriches transport processes with real-time route and traffic event information to improve monitoring and planning capabilities. Use case six shows the inclusion of spatio-temporal events on the example of unexpected weather events.
Every year, the Hasso Plattner Institute (HPI) invites guests from industry and academia to a collaborative scientific workshop on the topic “Operating the Cloud”. Our goal is to provide a forum for the exchange of knowledge and experience between industry and academia. Hence, HPI’s Future SOC Lab is the adequate environment to host this event which is also supported by BITKOM. On the occasion of this workshop we called for submissions of research papers and practitioner’s reports. ”Operating the Cloud” aims to be a platform for productive discussions of innovative ideas, visions, and upcoming technologies in the field of cloud operation and administration. In this workshop proceedings the results of the third HPI cloud symposium ”Operating the Cloud” 2015 are published. We thank the authors for exciting presentations and insights into their current work and research. Moreover, we look forward to more interesting submissions for the upcoming symposium in 2016.
Complexity in software systems is a major factor driving development and maintenance costs. To master this complexity, software is divided into modules that can be developed and tested separately. In order to support this separation of modules, each module should provide a clean and concise public interface. Therefore, the ability to selectively hide functionality using access control is an important feature in a programming language intended for complex software systems. Software systems are increasingly distributed, adding not only to their inherent complexity, but also presenting security challenges. The object-capability approach addresses these challenges by defining language properties providing only minimal capabilities to objects. One programming language that is based on the object-capability approach is Newspeak, a dynamic programming language designed for modularity and security. The Newspeak specification describes access control as one of Newspeak’s properties, because it is a requirement for the object-capability approach. However, access control, as defined in the Newspeak specification, is currently not enforced in its implementation. This work introduces an access control implementation for Newspeak, enabling the security of object-capabilities and enhancing modularity. We describe our implementation of access control for Newspeak. We adapted the runtime environment, the reflective system, the compiler toolchain, and the virtual machine. Finally, we describe a migration strategy for the existing Newspeak code base, so that our access control implementation can be integrated with minimal effort.
When realizing a programming language as VM, implementing behavior as part of the VM, as primitive, usually results in reduced execution times. But supporting and developing primitive functions requires more effort than maintaining and using code in the hosted language since debugging is harder, and the turn-around times for VM parts are higher. Furthermore, source artifacts of primitive functions are seldom reused in new implementations of the same language. And if they are reused, the existing API usually is emulated, reducing the performance gains. Because of recent results in tracing dynamic compilation, the trade-off between performance and ease of implementation, reuse, and changeability might now be decided adversely. In this work, we investigate the trade-offs when creating primitives, and in particular how large a difference remains between primitive and hosted function run times in VMs with tracing just-in-time compiler. To that end, we implemented the algorithmic primitive BitBlt three times for RSqueak/VM. RSqueak/VM is a Smalltalk VM utilizing the PyPy RPython toolchain. We compare primitive implementations in C, RPython, and Smalltalk, showing that due to the tracing just-in-time compiler, the performance gap has lessened by one magnitude to one magnitude.
New programming language designs are often evaluated on concrete implementations. However, in order to draw conclusions about the language design from the evaluation of concrete programming languages, these implementations need to be verified against the formalism of the design. To that end, we also have to ensure that the design actually meets its stated goals. A useful tool for the latter has been to create an executable semantics from a formalism that can execute a test suite of examples. However, this mechanism so far did not allow to verify an implementation against the design. Babelsberg is a new design for a family of object-constraint languages. Recently, we have developed a formal semantics to clarify some issues in the design of those languages. Supplementing this work, we report here on how this formalism is turned into an executable operational semantics using the RML system. Furthermore, we show how we extended the executable semantics to create a framework that can generate test suites for the concrete Babelsberg implementations that provide traceability from the design to the language. Finally, we discuss how these test suites helped us find and correct mistakes in the Babelsberg implementation for JavaScript.
This two-volume set constitutes the refereed proceedings of the workshops which complemented the 19th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in Würzburg, Germany, in September 2019. The 70 full papers and 46 short papers presented in the two-volume set were carefully reviewed and selected from 200 submissions. The two volumes (CCIS 1167 and CCIS 1168) present the papers that have been accepted for the following workshops: Workshop on Automating Data Science, ADS 2019; Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence and eXplainable Knowledge Discovery in Data Mining, AIMLAI-XKDD 2019; Workshop on Decentralized Machine Learning at the Edge, DMLE 2019; Workshop on Advances in Managing and Mining Large Evolving Graphs, LEG 2019; Workshop on Data and Machine Learning Advances with Multiple Views; Workshop on New Trends in Representation Learning with Knowledge Graphs; Workshop on Data Science for Social Good, SoGood 2019; Workshop on Knowledge Discovery and User Modelling for Smart Cities, UMCIT 2019; Workshop on Data Integration and Applications Workshop, DINA 2019; Workshop on Machine Learning for Cybersecurity, MLCS 2019; Workshop on Sports Analytics: Machine Learning and Data Mining for Sports Analytics, MLSA 2019; Workshop on Categorising Different Types of Online Harassment Languages in Social Media; Workshop on IoT Stream for Data Driven Predictive Maintenance, IoTStream 2019; Workshop on Machine Learning and Music, MML 2019; Workshop on Large-Scale Biomedical Semantic Indexing and Question Answering, BioASQ 2019. The chapter "Supervised Human-guided Data Exploration" is published open access under a Creative Commons Attribution 4.0 International license (CC BY).