Download Free Efficient 3d Face Recognition Based On Pca Book in PDF and EPUB Free Download. You can read online Efficient 3d Face Recognition Based On Pca and write the review.

Project Report from the year 2012 in the subject Engineering - Computer Engineering, Gujarat University, course: Electronics and communication, language: English, abstract: This thesis describes a face recognition system that overcomes the problem of changes in gesture and mimics in three-dimensional (3D) range images. Here, we propose a local variation detection and restoration method based on the two-dimensional (2D) principal component analysis (PCA). The depth map of a 3D facial image is first smoothed using median filter to minimize the local variation. The detected face shape is cropped & normalized to a standard image size of 101x101 pixels and the forefront nose point is selected to be the image center. Facial depthvalues are scaled between 0 and 255 for translation and scaling-invariant identification. The preprocessed face image is smoothed to minimize the local variations. The 2DPCA is applied to the resultant range data and the corresponding principal-(or eigen-) images are used as the characteristic feature vectors of the subject to find his/her identity in the database of pre-recorded faces. The system's performance is tested against the GavabDB facial databases. Experimental results show that the proposed method is able to identify subjects with different gesture and mimics in the presence of noise in their 3D facial image.
This book constitutes the refereed proceedings of the 14th International Symposium on Visual Computing, ISVC 2019, held in Lake Tahoe, NV, USA in October 2019. The 100 papers presented in this double volume were carefully reviewed and selected from 163 submissions. The papers are organized into the following topical sections: Deep Learning I; Computer Graphics I; Segmentation/Recognition; Video Analysis and Event Recognition; Visualization; ST: Computational Vision, AI and Mathematical methods for Biomedical and Biological Image Analysis; Biometrics; Virtual Reality I; Applications I; ST: Vision for Remote Sensing and Infrastructure Inspection; Computer Graphics II; Applications II; Deep Learning II; Virtual Reality II; Object Recognition/Detection/Categorization; and Poster.
Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study.
This authoritative text/reference presents a comprehensive review of algorithms and techniques for face recognition (FR), with an emphasis on systems that can be reliably used in operational environments. Insights are provided by an international team of pre-eminent experts into the processing of multispectral and hyperspectral face images captured under uncontrolled environments. These discussions cover a variety of imaging sensors ranging from state-of-the-art visible and infrared imaging sensors, to RGB-D and mobile phone image sensors. A range of different biometric modalities are also examined, including face, periocular and iris. This timely volume is a mine of useful information for researchers, practitioners and students involved in image processing, computer vision, biometrics and security.
3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application scenarios expected as the discipline develops further. The book covers face acquisition through 3D scanners and 3D face pre-processing, before examining the three main approaches for 3D facial surface analysis and recognition: facial curves; facial surface features; and 3D morphable models. Whilst the focus of these chapters is fundamentals and methodologies, the algorithms provided are tested on facial biometric data, thereby continually showing how the methods can be applied. Key features: • Explores the underlying mathematics and will apply these mathematical techniques to 3D face analysis and recognition • Provides coverage of a wide range of applications including biometrics, forensic applications, facial expression analysis, and model fitting to 2D images • Contains numerous exercises and algorithms throughout the book
Kernel Learning Algorithms for Face Recognition covers the framework of kernel based face recognition. This book discusses the advanced kernel learning algorithms and its application on face recognition. This book also focuses on the theoretical deviation, the system framework and experiments involving kernel based face recognition. Included within are algorithms of kernel based face recognition, and also the feasibility of the kernel based face recognition method. This book provides researchers in pattern recognition and machine learning area with advanced face recognition methods and its newest applications.
This book presents the latest developments in biometrics technologies and reports on new approaches, methods, findings, and technologies developed or being developed by the research community and the industry. The book focuses on introducing fundamental principles and concepts of key enabling technologies for biometric systems applied for both physical and cyber security. The authors disseminate recent research and developing efforts in this area, investigate related trends and challenges, and present case studies and examples such as fingerprint, face, iris, retina, keystroke dynamics, and voice applications . The authors also investigate the advances and future outcomes in research and development in biometric security systems. The book is applicable to students, instructors, researchers, industry practitioners, and related government agencies staff. Each chapter is accompanied by a set of PowerPoint slides for use by instructors.
This book constitutes the refereed proceedings of the Third International Workshop on Analysis and Modelling of Faces and Gestures, AMFG 2007, held within the scope of ICCV 2007, the International Conference on Computer Vision. The papers review the status of recognition, analysis and modeling of face, gesture, activity, and behavior. Topics addressed include feature representation, 3D face, video-based face recognition, facial motion analysis, and sign recognition.
More than 30 leading experts from around the world provide comprehensive coverage of various branches of face image analysis, making this text a valuable asset for students, researchers, and practitioners engaged in the study, research, and development of face image analysis techniques.
Fingerprints are among the most widely used biometric modalities and have been successfully applied in various scenarios. For example, in forensics, fingerprints serve as important legal evidence; and in civilian applications, fingerprints are used for access and attendance control as well as other identity services. Thanks to advances in three-dimensional (3D) and high-resolution imaging technology, it is now feasible to capture 3D or high-resolution fingerprints to provide extra information and go beyond the traditional features such as global ridge patterns and local ridge singularities used in conventional fingerprint recognition tasks. This book presents the state of the art in the acquisition and analysis of 3D and high-resolution fingerprints. Based on the authors’ research, this book focuses on advanced fingerprint recognition using 3D fingerprint features (i.e., finger shape, level 0 features) or high-resolution fingerprint features (i.e., ridge detail, level 3 features). It is a valuable resource for researchers, professionals and graduate students working in the field of computer vision, pattern recognition, security/biometrics practice, as well as interdisciplinary researchers.